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PAPER

Performance of Thorup’s Shortest Path Algorithm for Large-Scale
Network Simulation

Yusuke SAKUMOTO†a), Hiroyuki OHSAKI††b), and Makoto IMASE††c), Members

SUMMARY In this paper, we investigate the performance of Thorup’s
algorithm by comparing it to Dijkstra’s algorithm for large-scale network
simulations. One of the challenges toward the realization of large-scale
network simulations is the efficient execution to find shortest paths in a
graph with N vertices and M edges. The time complexity for solving a
single-source shortest path (SSSP) problem with Dijkstra’s algorithm with
a binary heap (DIJKSTRA-BH) is O((M+N) log N). An sophisticated algo-
rithm called Thorup’s algorithm has been proposed. The original version of
Thorup’s algorithm (THORUP-FR) has the time complexity of O(M + N).
A simplified version of Thorup’s algorithm (THORUP-KL) has the time
complexity of O(Mα(N) + N) where α(N) is the functional inverse of the
Ackerman function. In this paper, we compare the performances (i.e., exe-
cution time and memory consumption) of THORUP-KL and DIJKSTRA-
BH since it is known that THORUP-FR is at least ten times slower than
Dijkstra’s algorithm with a Fibonaccii heap. We find that (1) THORUP-KL
is almost always faster than DIJKSTRA-BH for large-scale network sim-
ulations, and (2) the performances of THORUP-KL and DIJKSTRA-BH
deviate from their time complexities due to the presence of the memory
cache in the microprocessor.
key words: SSSP (single-source shortest path problem), large-scale net-
work simulation, Dijkstra’s algorithm, Thorup’s algorithm

1. Introduction

One of the challenges toward the realization of large-scale
network simulations is the efficient execution of shortest-
path routing (e.g., static routing) [1]–[3]. All network simu-
lators require some type of routing to be performed. Net-
work simulators generally use a solution that assumes a
single-source shortest path (SSSP) problem with static rout-
ing. For instance, one of the most popular network sim-
ulators, ns-2 [4], uses Dijkstra’s algorithm with a binary
heap (hereafter referred to as DIJKSTRA-BH) [5], [6]. With
static routing, ns-2 first obtains the shortest paths for all
source–destination node pairs.

Note the mapping between static routing in network
simulation and an SSSP problem in graph theory. A net-
work consisting of nodes and links can, in network simula-
tion, be viewed as a graph consisting of vertices and edges
permitting the application of graph theory. In this paper, we
intentionally use both types of words according to the con-
text.
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The time complexity of DIJKSTRA-BH is O((M +
N) log N) where N and M are the number of vertices and
edges, respectively, in a graph [5], [6]. Since network sim-
ulators usually need to obtain the shortest paths for all
source–destination node pairs, network simulators take a
significant amount of time just for static routing [1].

An sophisticated solution for the single-source shortest
path problem, called Thorup’s algorithm, has been proposed
[7]. The original version of Thorup’s algorithm (hereafter
THORUP-FR) uses Fredman’s algorithm [8] for obtaining
the minimum spanning tree. THORUP-FR is a linear time
algorithm with the time complexity of O(M + N). A sim-
plified version of Thorup’s algorithm (hereafter THORUP-
KL), which uses Kruskal’s algorithm [9] for obtaining the
minimum spanning tree, is also discussed in [7]. The
time complexity of THORUP-KL is O(M α(N) + N) where
α(N) is the functional inverse of the Ackerman function [6].
The time complexity of THORUP-KL is larger than that of
THORUP-FH.

A comparison of the time complexities of Thorup’s and
Dijkstra’s algorithms suggests that Thorup’s algorithm is
more efficient than Dijkstra’s for, in particular, large-scale
network simulations. However, to the best of our knowl-
edge, this efficiency in practice has not been fully investi-
gated for large-scale network simulations.

The objective of this paper is, therefore, to investigate
the performance of Thorup’s algorithm by comparing it to
Dijkstra’s, and to answer the following questions.

1. How efficiently/inefficiently does Thorup’s algorithm
perform compared with Dijkstra’s for large-scale (e.g.,
million nodes) network simulations?

2. How and why does the practical performance of Tho-
rup’s and Dijkstra’s algorithms deviate from their time
complexities (i.e., theoretical performance)?

The work by Asano et al. [10] reported that practical
efficiency of THORUP-FR is at least ten times lower than
that of Dijkstra’s algorithm with a Fibonacci heap (hereafter
DIJKSTRA-FH) [11]. DIJKSTRA-FH has a better amor-
tized time complexity than DIJKSTRA-BH [5]. In [10], the
authors investigated the performance of THORUP-FR (i.e.,
the original version of Thorup’s algorithm) using their im-
plementation for medium-scale random graphs with 50,000
vertices. Even with the linear time complexity of THORUP-
FR, the authors showed that THORUP-FR is at least ten
times slower than DIJKSTRA-FH. The authors explain that
their implementation of THORUP-FR is very slow due to

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



SAKUMOTO et al.: PERFORMANCE OF THORUP’S SHORTEST PATH ALGORITHM FOR LARGE-SCALE NETWORK SIMULATION
1593

the time needed to construct the minimum spanning tree
with Fredman’s algorithm [10].

In this paper, we compare the performances (i.e., ex-
ecution time and memory consumption) of THORUP-KL
(i.e., a simplified version of Thorup’s algorithm) with the
time complexity of O(M α(N) + N) and DIJKSTRA-BH.

There are several variants of Dijkstra’s algorithm with
different time complexities of O(M + N2) [12], O((M +
N) log N) [5] and O(M+N log N) [11]. In this paper, we fo-
cus on Dijkstra’s algorithm with a binary heap (DIJKSTRA-
BH) [5] with the time complexity of O((M+N) log N). Note
that the communication network considered here is a sparse
network. Although DIJKSTRA-FH has the smallest order of
time complexity O(M+N log N) among the variants known,
it is known that DIJKSTRA-BH is faster than DIJKSTRA-
FH for sparse networks [13], [14]. Therefore, DIJKSTRA-
BH is the best choice to provide a comparison of THORUP-
KL.

Extensive experiments on our implementations of
THORUP-KL and DIJKSTRA-BH elucidate their execu-
tion time and memory consumption. Among our findings
(1) THORUP-KL is almost always faster than DIJKSTRA-
BH for large-scale network simulations, and (2) the perfor-
mances of THORUP-KL and DIJKSTRA-BH deviate from
their time complexities due to the presence of memory cache
in the microprocessor.

The organization of this paper is as follows. Sec-
tion 2 introduces Thorup’s algorithm. In Sect. 3, we com-
pare the performance of DIJKSTRA-BH and THORUP-KL
for large-scale network simulations. Finally, Sect. 4 con-
cludes this paper and discusses future works.

2. Thorup’s Algorithm

In this section, we briefly introduce Thorup’s algorithm. Re-
fer to [7] for the details. Thorup’s algorithm is a solution of
the single-source shortest path (SSSP) problem for an undi-
rected graph G = (V, E) with source vertex s ∈ V and pos-
itive integer edge weight function l : E → {1, · · · , 2ω,∞}
where ω is the word length [7]. If (v, w) � E, we define
l(v, w) = ∞.

The single source shortest path problem (SSSP) is to
find the shortest paths with the distance d(v) from source
vertex s to every vertex v ∈ V . Let D be the super distance,
which follows that D(v) = d(v) for all v ∈ S and D(v) =
minu∈S d(u) + l(u, v) for all v ∈ V − S . If V = S (i.e., d(v) =
D(v) for all vertices), the single source shortest path problem
is solved.

Dijkstra’s algorithm finds the shortest paths from a
source vertex s by gradually expanding S . Initially, S = {s},
D(s) = d(s) = 0, and D(v) = d(s) + l(s, v) for all v ∈ V − {s}.
Dijkstra proved in [12] that

D(v) = d(v), (1)

if vertex v ∈ V−S minimizes D(v). Hence, since D(v) = d(v)
for the vertex v minimizing D(v), the vertex v can be moved
to S . At the same time, Dijkstra’s algorithm visits the vertex

v, and if D(v) + l(v, w) < D(w) for any w ∈ V − S , Dijk-
stra’s algorithm decreases D(w) to D(v) + l(v, w). Dijkstra’s
algorithm repeats visiting vertex v ∈ V − S minimizing D(v)
until S = V . For visiting vertex v ∈ V − S minimizing D(v),
Dijkstra’s algorithm needs to sort vertices according to D(v),
leading to non-linear time complexity.

Thorup’s algorithm uses component hierarchy of G for
realizing linear time complexity [7]. We denote the sub-
graph of G by Gi = (V, Ei) where Ei = {(u, w) ∈ E|l(u, w) <
2i}(0 ≤ i ≤ ω). Hence, G0 does not have a edge. Gω
is equal to G. On level i in the component hierarchy, we
have the components (maximal connected subgraphs) of Gi.
We denote the component on level i by [v]i including the
vertex v. If w ∈ Ver([v]i), [v]i = [w]i. Let Ver([v]i) be
the set of vertices of the component [v]i. Let min([v]i) be
minw∈Ver([v]i)−S D(w) for given G and S . If Ver([v]i) − S = ∅,
min([v]i) = ∞. We will write x � i is right shift operation,
which calculates the i least significant bits of x out to the
right. Thorup proved in [7] that

D(v) = d(v), (2)

if vertex v ∈ V−S satisfies min([v]i) � i−1 = min([v]i−1) �
i − 1 for any i(0 < i ≤ ω). Hence, in Thorup’s algo-
rithm, regardless of whether vertex v does not minimizes
D(v), the vertex v can be moved to S . Therefore, Thorup’s
algorithm does not need to the sorting vertices according to
D(v). Component [v]i (i > 0) has a bucket to obtain compo-
nents with min([v]i) � i − 1 = min([v]i−1) � i − 1. For
efficiently obtaining the components, Thorup’s algorithm
sorts components [v]i−1 in the bucket of [v]i according to
min([v]i−1) � i − 1 with bucket sort.

In Thorup’s algorithm, the topological structure of the
component hierarchy represents component tree. Each node
on the level i in a component tree corresponds to a com-
ponent on the level i in a component hierarchy. [v]ω is the
root node in a component tree. If Ver([v]i) ⊂ Ver([v]i+1)
in a component hierarchy, [v]i+1 is the parent of [v]i in a
component tree. If Ver([v]i) = Ver([v]i−1), [v]i−1 is skipped
in a component tree. Figures 1 and 2 illustrate examples
of the graph and component tree, respectively. When the
source vertex s = v1, initially, S = {v1}, D(v1) = d(v1) = 0,
D(v2) = 5, D(v4) = 4, and D(v3) = D(v5) = ∞. In Tho-
rup’s algorithm, min([v1]3) = min([v2]2) = min([v4]1) = 4,
min([v2]1) = min([v2]0) = 5, and min(·) = ∞ for other-
wise components. Since the vertex v4 minimizes D(v), Di-
jkstra’s algorithm can visit the vertex v4. On the other hand,
since min([v2]3) � 2 = min([v2]2) � 2, min([v2]2) �
1 = min([v2]1) � 1, min([v2]1) � 0 = min([v2]0) � 0,
min([v4]3) � 2 = min([v4]2) � 2, and min([v4]2) � 1 =
min([v4]1) � 1, Thorup’s algorithm can visit the vertices v2
and v4.

Figure 3 illustrates an example of building a compo-
nent tree in Thorup’s algorithm. First, the component [v1]3

for the whole graph is added to the component tree (see
Fig. 3(b)). The graph is partitioned into three components,
[v1]2, [v2]2, and [v5]2 by ignoring edges (u, w) ∈ E − E2 (see
Fig. 3(c)). The components [v1]2, [v2]2, and [v5]2 are added
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Fig. 1 An example of a graph.

Fig. 2 An example of the component tree for the graph illustrated in
Fig. 1.

to the component tree (see Fig. 3(d)). This procedure is re-
peated until all components become singletons. Namely,
edges (u, w) ∈ E − E0 are then ignored, which results in five
singletons, [v1]0, [v2]0, [v3]0, [v4]0, and [v5]0 (see Fig. 3(g)).
The components [v1]0 through [v5]0 are added to the com-
ponent tree (see Fig. 3(h)). In Fig. 2, the components [v]i−1

with [v]i = [v]i−1 are skipped.
Figure 4 illustrates an example of finding shortest paths

from the vertex v1 (source vertex) to all other vertices in
Thorup’s algorithm. Initially, S = {v1}, D(v1) = d(v1) = 0,
D(v2) = 5, D(v4) = 4, D(v3) = D(v5) = ∞, min([v1]3) =
min([v2]2) = min([v4]1) = 4, min([v2]1) = min([v2]0) = 5,
and min(·) = ∞ for otherwise components (see Fig. 4(a)).
First, since min([v2]3) � 2 = min([v2]2) � 2, min([v2]2) �
1 = min([v2]1) � 1, min([v2]1) � 0 = min([v2]0) � 0,
min([v4]3) � 2 = min([v4]2) � 2, and min([v4]2) � 1 =
min([v4]1) � 1, Thorup’s algorithm can visit the vertices
v2 and v4 (see Fig. 4(b)). In this example, Thorup’s algo-
rithm visits the vertex v2 in first. Secondly, Thorup’s al-
gorithm visits the vertex v4(see Fig. 4(d)). Thirdly, since
min([v3]3) � 2 = min([v3]2) � 2, min([v3]2) � 1 =
min([v3]1) � 1, and min([v3]1) � 0 = min([v3]0) � 0,
Thorup’s algorithm can visit the vertex v3 (see Fig. 4(f)). Fi-
nally, Thorup’s algorithm visits the vertex v5 (see Fig. 4(h)).

For archiving the time complexity O(M+N) of finding
shortest paths, Thorup’s algorithm determines bucket sizes
of each component by using the minimum spanning tree of
G. Thorup proved that the total amount of bucket sizes is
O(M + N) in [7].

The component tree is a N-ary tree [15]. A component
[v]i on the level i of the component tree has pointers for child
component [w]i−1 on the level i − 1, and a bucket to store
its pointers according to min([w]i−1) of child component
[w]i−1. Since each component has a bucket, the component
tree consumes more memory compared with binary heap in

DIJKSTRA-BH. To easily implement traversing the compo-
nent tree from the component tree, recursion is needed.

The efficiency of Thorup’s algorithm is due to mini-
mum spanning tree. In [7], two algorithms for finding the
minimum spanning tree, Kruskal’s [9] and Fredman’s [8]
algorithms, are discussed.

Fredman’s algorithm is an efficient algorithm, whose
time complexity is O(M). The original version of Thorup’s
algorithm (THORUP-FR) uses Fredman’s algorithm for ob-
taining the minimum spanning tree. Incorporation of Fred-
man’s algorithm into THORUP-FR is another key technique
for realizing a linear time algorithm of O(M + N).

Kruskal’s algorithm is an simple algorithm with the
time complexity of O(M α(N)) where α(N) is the functional
inverse of the Ackerman function [6]. A simplified version
of Thorup’s algorithm (THORUP-KL) uses Kruskal’s algo-
rithm for obtaining the minimum spanning tree. THORUP-
KL is no longer a linear time algorithm since Kruskal’s algo-
rithm is not a linear time algorithm; i.e., the time complexity
of THORUP-KL is O(M α(N) + N).

3. Experiment

3.1 Methodology

Through extensive experiments, we compare the perfor-
mance of Thorup’s and Dijkstra’s algorithms in terms of
speed and memory consumption. We implemented Thorup’s
algorithm using Kruskal’s algorithm for obtaining the mini-
mum spanning tree (THORUP-KL) and Dijkstra’s algorithm
using with binary heap (DIJKSTRA-BH) [6].

Note that in our experiments, THORUP-KL is used in-
stead of THORUP-FR even though THORUP-KL is the-
oretically less efficient than THORUP-FR. As explained
in Sect. 2, THORUP-KL is not a linear time algorithm.
However, we intentionally use THORUP-KL instead of
THORUP-FR for the following two practical reasons.

The first reason is that Asano et al. have shown that
THORUP-FR is very slow in practice [10]. The second
reason is that the time complexity of Kruskal’s algorithm,
O(M α(N)), should be comparable with that of Fredman’s,

O(M), since it is known that α(N) ≤ 4 for all N < 22265536 − 3
[6]. Namely, the performance of THORUP-KL should be
comparable with (or might be even faster than) that of
THORUP-FR for large-scale network simulations.

All experiments were run on a computer with a sin-
gle Intel Pentium4 2.80 [GHz] processor with 1 [Gbyte] of
memory running Debian GNU/Linux 5.0 (kernel version
2.6.26).

For clearly examining performance of THORUP-KL
and DIJKSTRA-BH, we used a simple network topology.
Namely, we generated a random network with ER (Erdös-
Rényl) model [16] for given network size N (i.e., the num-
ber of nodes) and average degree k (i.e., the average number
of links connected to each node). A random network is a
traditional network model, and it has been used in large-
scale network simulations [17]. We claim neither that a ran-
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Fig. 3 An example of building the component tree.

Fig. 4 Finding shortest paths from the vertex v1 using the component tree.

dom network is the typical network topology for network
simulation studies nor that performance evaluation with a
random network is sufficient for comparing performance
of THORUP-KL and DIJKSTRA-BH. However, similar to
Asano et al. [10], we generated a random network to sim-
plify the performance evaluation of THORUP-KL.

We measured the average and 95% confidence inter-

val of measurements (e.g., execution time and memory con-
sumption) for ten random graphs with the same network size
N and average degree k. In all figures, 95% confidence in-
tervals are not shown since they are negligible small (i.e.,
less than 1.0% of each measurement).
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3.2 Speed

We first evaluate the performance of THORUP-KL and
DIJKSTRA-BH in terms of speed by measuring their ex-
ecution times. THORUP-KL and DIJKSTRA-BH are for a
single-source shortest path problem. On the contrary, net-
work simulators usually need to obtain shortest paths for all
source–destination node pairs. We, therefore, estimated the
execution time for obtaining all-pairs shortest paths from
the execution time taken to obtain single-source shortest
paths. Note that obtaining all-pairs shortest paths is the
worst case; i.e., if the number of source–destination pairs is
not so large, the network simulator does not need to obtain
all-pairs shortest paths. We separately measured the mean

times for program initialization, TG
init, and the computation

of single-source shortest paths, TG
S S S P, for graph G. The ex-

ecution time for obtaining all-pairs shortest paths for G with
N vertices, TG

APS P, is estimated as

TG
APS P = TG

init + N TG
S S S P.

Execution times of THORUP-KL and DIJKSTRA-BH
for obtaining all-pairs shortest paths for different network
sizes with an average degree (i.e., k = 5) and multiple edge
weights (i.e., randomly-chosen integer edge weights from 1
to 1,000) are shown in Fig. 5. Note that the average degree of
Internet AS topology was 5.97 in 2005 [18], [19]. This fig-
ure shows that execution times increase rapidly as network
size N increases. This phenomenon is not surprising since
the time complexity of any algorithm for all-pairs shortest
path problem is at least O(N2).

To visually show the difference in execution times of
THORUP-KL and DIJKSTRA-BH, the relative execution
time (i.e., the execution time of THORUP-KL normalized
by that of DIJKSTRA-BH) for k = 5 and 10 is shown in
Fig. 6. In this figure, results with two types of edge weights
are shown: the single edge weight (i.e., 1 for all edges) and
multiple edge weights (i.e., randomly-chosen integer edge
weights from 1 to 1,000).

In contrast to the comparison results of THORUP-FR
and DIJKSTRA-FH in [10], this figure clearly indicates
that THORUP-KL is almost always faster than DIJKSTRA-
BH for any network size N, average degree k, and edge
weight. In [10], it was reported that even with its linear
time complexity, THORUP-FR is at least ten times slower
than DIJKSTRA-FH for medium-scale random graphs with
50,000 vertices. In Fig. 6, the maximum value of the relative
execution time is 1.02, which implies that the performance
of THORUP-KL is comparable with that of DIJKSTRA-BH
even in the worst case. For large-scale (e.g., million nodes)
network simulations, THORUP-KL achieves almost double
the efficiency of DIJKSTRA-BH.

These results suggest a natural question: why does
THORUP-FR perform inefficiently in [10] while THORUP-
KL performs efficiently in our experiments? One possible
explanation is the algorithm used for finding the minimum

Fig. 5 Execution times of THORUP-KL and DIJKSTRA-BH for obtain-
ing all-pairs shortest paths for the average degree k = 5 and multiple edge
weights of 1–1000.

Fig. 6 Relative execution time (i.e., the execution time of THORUP-KL
normalized by that of DIJKSTRA-BH) for different average degrees k and
types of edge weights.

spanning tree. Namely, Asano et al. used Fredman’s algo-
rithm whereas we used Kruskal’s algorithm. It was reported
in [10] that for random graphs with 50,000 vertices, Fred-
man’s algorithm itself consumes significant amount of time
(e.g., 86% for M = 175, 065 and 98% for M = 424, 396) of
the total execution time in their experiments.

From detailed measurements of our implementation,
we have found that Kruskal’s algorithm itself consumed ap-
proximately 5% of the total execution time. Such a dras-
tic reduction in the execution time for finding the mini-
mum spanning tree should be the reason for effectiveness
of THORUP-KL. Note that Asano et al. addressed and ex-
tensively studied the practical inefficiency of Fredman’s
algorithm in [10]. We could choose THORUP-KL with
Kruskal’s algorithm due to their findings.

Also, contrary to one’s expectation, Fig. 6 shows a
somewhat strange phenomenon; i.e., the relative execution
time is like a camel-shaped function for network size N
regardless of the average degree k and the type of edge
weights.
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The relative time complexity of THORUP-KL to
DIJKSTRA-BH is given by

O((M α(N) + N)
O((M + N) log N)

≈ O

(
α(N)
log N

)
. (3)

Note the existence of α(N) in the numerator because we
used Kruskal’s algorithm instead of Fredman’s. Recall that

α(N) ≤ 4 for all N < 22265536 − 3 [6]. Thus, Eq. (3) should be
an asymptotically monotone decreasing for network size N.
One would, therefore, expect that the relative execution time
TG

APS P should yield an asymptotically monotone decreasing
function for network size N.

Aside from the camel-shaped function, Fig. 6 indicates
that the relative execution time is moderately affected by the
type of edge weights, and slightly by the average degree k.
This is again contrary to one’s expectations. The relative
time complexity (Eq. (3)) is independent of the average de-
gree k (i.e., the number of edges M). One would, therefore,
expect that relative execution time TG

APS P should not be af-
fected by the average degree k.

In Sects. 3.4 and 3.5, we will investigate the cause of
those deviations of the relative execution time (i.e., camel-
shaped function and dependence on the average degree k)
from the relative time complexity.

3.3 Memory Consumption

We next evaluate the performance of THORUP-KL and
DIJKSTRA-BH in terms of memory consumption. We mea-
sured the memory consumption for obtaining all-pairs short-
est paths. Note that the memory consumption for obtain-
ing all-pairs shortest paths is equivalent to that for obtain-
ing single-source shortest paths because of its repetitive pro-
gram execution.

Memory consumptions of THORUP-KL and DIJK-
STRA-BH for obtaining all-pairs shortest paths for different
network sizes are shown in Fig. 7. In this figure, the av-
erage degree k = 5 and multiple edge weights of 1–1000
are used. Note that we have observed that the memory con-
sumptions of THORUP-KL and DIJKSTRA-BH are not sig-
nificantly affected by the average degree k and the type of
edge weights.

Figure 7 shows that the memory consumption of
THORUP-KL is approximately 1.4 times larger than that
of DIJKSTRA-BH. This is directly caused by the differ-
ence in the data structures used in THORUP-KL (i.e., a
hierarchical bucketing structure) and DIJKSTRA-BH (i.e.,
a binary heap). More specifically, the space complexity
[20] of DIJKSTRA-BH is O(N) [5]. The space complex-
ity of THORUP-KL is also O(N) [7]. Therefore, the rela-
tive memory consumption (i.e., the memory consumption
of THORUP-KL normalized by that of DIJKSTRA-BH)
should be independent of network size N. Although the
data structure of DIJKSTRA-BH (i.e., a binary heap) can
be implemented as one-dimensional array, the data struc-
ture of THORUP-KL is a complicated hierarchical bucket-
ing structure. A hierarchical bucketing structure consists of

Fig. 7 Memory consumptions of THORUP-KL and DIJKSTRA-BH for
the average degree k = 5 and multiple edge weights of 1–1000.

a component tree and buckets for each component, which is
apparently less memory efficient than the binary heap.

3.4 Cause of Camel-Shaped Function

The larger memory consumption of THORUP-KL than that
of DIJKSTRA-BH might be the cause of the camel-shaped
function of the relative execution time (see Fig. 6). As ob-
served in Fig. 7, THORUP-KL consumes approximately 1.4
times more memory than that of DIJKSTRA-BH. One pos-
sible explanation is the effect of memory cache of the micro-
processor. If the memory usage is greedy, memory accesses
are less likely to hit the cache, significantly slow down pro-
gram execution.

To clarify why the relative execution time exhibits
a camel-shaped function for network size N, we investi-
gate the effect of the memory cache on the performance of
THORUP-KL and DIJKSTRA-BH. We performed the same
experiments as those in Sect. 3.2 with the memory cache
in the microprocessor is disabled. Relative execution times
with and without the memory cache are shown in Fig. 8.

Figure 8 clearly shows that the relative execution time
without the memory cache is a monotone decreasing func-
tion for network size N. On the contrary, when the mem-
ory cache is enabled, the relative execution time is a camel-
shaped function for network size N.

Figure 8 also plots a fitted curve for the relative ex-
ecution time without the memory cache. Recall again
the relative time complexity (Eq. (3)) of THORUP-KL to

DIJKSTRA-BH and α(N) ≤ 4 for all N < 22265536 − 3. We
therefore used c1/ log N + c2 for curve fitting, and obtained
c1 = 7.17 and c2 = 0.08. The fitted curve well matches
the relative execution time without the memory cache, indi-
cating that the relative execution time can be well explained
with the relative time complexity (Eq. (3)). Reversely, this
suggests that the camel-shaped function of the relative exe-
cution time is due to be the memory cache of the micropro-
cessor.

More detailed investigation can be possible by examin-
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Fig. 8 Relative execution times with and without the memory cache for
the average degree k = 5 and multiple edge weights of 1–1000.

Fig. 9 L1 cache miss rate of THORUP-KL and DIJKSTRA-BH for the
average degree k = 5, 10 and multiple edge weights of 1–1000.

Fig. 10 L2 cache miss rate of THORUP-KL and DIJKSTRA-BH for the
average degree k = 5, 10 and multiple edge weights of 1–1000.

ing the memory cache performance. We measured the mem-
ory cache performance (i.e., L1 and L2 cache miss rates) us-
ing a cache profiler called cachegrind [21]. Figures 9 and 10
show cache miss rates of THORUP-KL and DIJKSTRA-BH

for L1 and L2 cache, respectively. These figures clearly in-
dicate that THORUP-KL is not cache-friendly. More specif-
ically, L1 and L2 cache miss rates of THORUP-KL are as
approximately 2–4 times larger than those of DIJKSTRA-
BH. Namely, THORUP-KL suffers much more frequently
from cache miss penalties than DIJKSTRA-BH, leading to
a significant slow down in program execution. From Fig. 10,
we can explain why the relative execution time exhibits
camel-shaped function. Figure 10 shows that the L2 cache
miss rate of THORUP-KL increases more rapidly than that
of DIJKSTRA-BH in medium-scale (several tens of thou-
sands of network size) networks. Therefore, the relative ex-
ecution time of Thorup’s algorithm increases in medium-
scale networks. Figure 8 shows that the L2 cache miss
rates of THORUP-KL and DIJKSTRA-BH gently increase
in large-scale (hundred thousands network size) networks.
Therefore, in large-scale networks, the relative execution
time of Thorup’s algorithm decreases with the relative time
complexity (Eq. (3)).

So, why is the THORUP-KL not cache-friendly?
Memory cache performance is affected by several factors
including the size of memory used and the locality of mem-
ory accesses (i.e., spatial and temporal localities) during
program execution [22]. As explained in Sect. 3.3, both
THORUP-KL and DIJKSTRA-BH are linear space algo-
rithms. The inability of THORUP-KL to effectively use the
cache compared with DIJKSTRA-BH can be explained as
follows.

• Larger memory usage
THORUP-KL consumes approximately 1.4 times more
memory than DIJKSTRA-BH (see Fig. 7). Larger
memory consumption results in a higher cache miss
rate.
• Lower spatial locality

The hierarchical bucketing structure of THORUP-KL
is sparsely allocated in memory while the binary heap
of DIJKSTRA-BH is densely allocated. The hierarchi-
cal bucketing structure consists of several types of ele-
ments such as references (i.e., pointers) to buckets and
references to child components. The binary heap can
be realized as an array. The lower spatial locality of
THORUP-KL results in a higher cache miss rate.
• Lower temporal locality

THORUP-KL needs recursion, whereas DIJK-STRA-
BH doesn’t. Because it uses the hierarchical bucketing
structure, THORUP-KL needs to recursively visit com-
ponents. Recursion generally results in lower temporal
locality. On the contrary, DIJKSTRA-BH requires only
looping. Lower temporal locality of THORUP-KL re-
sults in a higher cache miss rate.

Therefore, as the camel-shaped function of the relative ex-
ecution time indicates, its performance is significantly im-
pacted by the memory cache performance.
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Table 1 Measured CPI time, access time and cache miss penalty.

CPI (Cycles Per Instruction) time TCPU 0.96 [ns]
access time of L1 cache TAL1 1.4 [ns]

cache miss penalty of L1 cache TL1 49.4 [ns]
cache miss penalty of L2 cache TL2 435.3 [ns]

Table 2 System specifications.

FSB (Front-Side Bus) clock 800 [MHz]
L1 cache size 32 [kbyte]
L2 cache size 1024 [kbyte]
memory DDR2-533
memory controller hub Intel 82945G
memory clock 133 [MHz]
memory bus width 128 [bit]
I/O bus clock 266 [MHz]

3.5 Understanding Effect of Memory Cache Performance
on Relative Execution Time

For practically utilizing THORUP-KL for network simula-
tions, a thorough understanding of its performance is neces-
sary. In particular, we need to understand how the perfor-
mance of THORUP-KL is affected by memory cache per-
formance. Hence, we finally try to answer the last question:
how is the relative execution time affected by several fac-
tors such as L1 and L2 cache miss rates and their cache miss
penalties?

Let us introduce a simple cache performance model
[23], which approximates the execution time T̃ of a program
on a microprocessor with L1 and L2 memory caches.

T̃ = NI TCPU + NM(TAL1 + pL1 TL1 + pL2 TL2) (4)

In the above equation, NI is the number of instructions exe-
cuted, TCPU is the CPI (Cycles Per Instruction) time, and NM

is the number of memory accesses performed. Also, TAL1 is
the access time of L1 cache, and TLi and pLi (i = 1, 2) are
the cache miss penalty and Li cache miss rate, respectively.

We already have L1 and L2 cache miss rates, pL1 and
pL2, in Figs. 9 and 10. The number of instructions exe-
cuted, NI , and the number of memory accesses performed,
NM , can be obtained with cachegrind. We then measured
other system-dependent (and program-independent) param-
eters, TCPU , TAL1, TL1, and TL2, in the computer with system
specification shown in Table 2 using a benchmark tool called
lmbench [24]. Our measurement results are summarized in
Table 1.

By setting all parameters in Eq. (4) to our measured
values, execution times of THORUP-KL and DIJKSTRA-
BH, T̃T and T̃D, can be estimated. Thus, the estimated rel-
ative execution time, T̃T /T̃D, can be measured. Figure 11
shows the estimated relative execution times obtained from
Eq. (4) as well as the relative execution time obtained in
Sect. 3.2.

Figure 11 shows that the simple cache performance
model well explains the camel-shaped function of the rel-
ative execution time. It should be noted that both the rela-
tive execution time and the estimated relative execution time

Fig. 11 Measured and estimated relative execution times with the mem-
ory cache for the average degrees k = 5, 10 and multiple edge weights of
1–1000.

take the maximum value at network size between 104 and
105 (see Fig. 11). Namely, the simple cache performance
model roughly captures the dynamics of the relative execu-
tion time. In other words, the camel-shaped function of the
relative execution time can be explained solely by the mem-
ory cache performance.

3.6 Discussion

As explained in Sect. 2, the time complexity of THORUP-
FR is O(M+N) whereas that of THORUP-KL is O(M α(N)+
N). We intentionally used THORUP-KL instead of
THORUP-FR. Our experiments clearly show that the practi-
cal efficiency of an algorithm cannot be predicted from just
its time complexity. Its performance is significantly affected
by how well it works with memory cache.

In Sects. 3.4 and 3.5, we investigated the effect
of memory cache on performance of THORUP-KL and
DIJKSTRA-BH from two different approaches. It is well
known that performance of an algorithm is considerably in-
fluenced by memory cache [22], [25], [26]. Also, studies
on cache-aware and cache-oblivious algorithms have been
actively performed [25], [27], [28]. The effect of memory
cache on the performance of an algorithm is quite compli-
cated. Therefore, its performance should be carefully inves-
tigated with extensive experiments, as we have done in this
paper.

In Sect. 3.2, we have shown that THORUP-KL is al-
most always faster than DIJKSTRA-BH regardless of the
network size N, the average degree k, and the type of
edge weights. This implies that THORUP-KL is superior
to DIJKSTRA-BH for network simulations. However, as
discussed in Sect. 3.1, we have only used a simple net-
work model (i.e., random network). The performance of
THORUP-KL and DIJKSTRA-BH might be affected by the
type of networks (e.g., hierarchical network [29] and scale-
free network [30]). More investigation with realistic net-
work models would be of great interest.

In Sect. 3.5, we demonstrated the potential of a simple
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cache performance model for analyzing the effect of sys-
tem performance on the execution time. For instance, the
simple model enables us to predict the effect of system per-
formance improvement/degradation on the execution time.
More specifically, the execution time with a double-speed
microprocessor can be predicted simply by halving TCPU

in Eq. (4). Also, the execution time with double-speed L1
cache memory can be predicted simply by halving TL1 in
Eq. (4). Note that program-specific parameters (i.e., the
number of instructions executed, NI , the number of memory
accesses performed, NM, and cache miss rates pL1 and pL2)
are independent of other system-specific parameters (i.e.,
TCPU , TL1 and TL2). Thus, we can freely change system
parameters in Eq. (4) so as to estimate their effect on the
execution time. We are planning to investigate the effect of
system architecture (e.g., type of microprocessors and mem-
ory cache architecture) on the performance of THORUP-KL
and DIJKSTRA-BH.

It is beyond the scope of this paper, but the performance
of THORUP-KL and DIJKSTRA-BH in a parallel environ-
ment should be investigated since the usage of SMP pro-
cessors and/or parallel computers might be the only viable
choice for very large-scale network simulations. Multiple
instances of a single-source shortest path algorithm can be
executed in parallel on SMP processors and/or parallel com-
puters.

4. Conclusion

This paper investigated the performance of Thorup’s algo-
rithm by comparing it to Dijkstra’s, and answering the fol-
lowing questions.

1. How efficiently/inefficiently does Thorup’s algorithm
perform compared with Dijkstra’s for large-scale (e.g.,
million nodes) network simulations?

2. How and why does the practical performance of Tho-
rup’s and Dijkstra’s algorithms deviate from their time
complexities (i.e., theoretical performance)?

In this paper, we intentionally used THORUP-KL (i.e.,
a simplified version of Thorup’s algorithm) with the time
complexity of O(M α(N) + N).

There are several variants of Dijkstra’s algorithm with
different time complexities of O(M + N2) [12], O((M +
N) log N) [5] and O(M + N log N) [11]. In this paper,
we focused on Dijkstra’s algorithm with a binary heap
(DIJKSTRA-BH) [5] with the time complexity of O((M +
N) log N).

Extensive experiments on our implementations of
THORUP-KL and DIJKSTRA-BH yielded a performance
comparison in terms of execution time and memory con-
sumption. Our findings include (1) THORUP-KL is almost
always faster than DIJKSTRA-BH for large-scale network
simulations, and (2) the performances of THORUP-KL and
DIJKSTRA-BH deviate from their time complexities if they
access memory cache in the microprocessor.

Acknowledgement

This work was supported by the Grant-in-Aid for Young Sci-
entists (A) (19680003) by the Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT).

References

[1] D.M. Nicol, M. Liljenstam, and J. Liu, “Advanced concepts in large-
scale network simulation,” Proc. 37th Conference on Winter Simu-
lation, pp.153–166, Dec. 2005.

[2] P. Huang and J. Heidemann, “Minimizing routing state for light-
weight network simulation,” Proc. IEEE Computer Society’s 9th An-
nual International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems (MASCOTS),
pp.108–116, Aug. 2001.

[3] Z. Hao, X. Yun, and H. Zhang, “An efficient routing mechanism
in network simulation,” Simulation, vol.84, no.10-11, pp.511–520,
May 2008.

[4] “The network simulator — ns2.2 available at http://www.isi.
edu/nsnam/ns/

[5] J. Williams, “Heapsort,” Commun. ACM, vol.7, no.6, pp.347–348,
1964.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed., MIT Press, 2009.

[7] M. Thorup, “Undirected single-source shortest paths with posi-
tive integer weights in linear time,” J. ACM (JACM), vol.46, no.3,
pp.362–394, May 1999.

[8] M.L. Fredman and D.E. Willard, “Trans-dichotomous algorithms for
minimum spanning trees and shortest paths,” J. Comput. Syst. Sci.,
vol.48, no.3, pp.533–551, June 1994.

[9] J.B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. American Mathematical Society,
pp.48–50, JSTOR, Feb. 1956.

[10] Y. Asano and H. Imai, “Practical efficiency of the linear-time al-
gorithm for the single source shortest path problem,” J. Operations
Research Society of Japan, vol.43, no.4, pp.431–447, Dec. 2000.

[11] M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” J. ACM (JACM),
vol.34, no.3, pp.596–615, July 1987.

[12] E.W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol.1, no.1, pp.269–271, Dec. 1959.

[13] B.V. Cherkassky, A.V. Goldberg, and T. Radzik, “Shortest paths al-
gorithms: Theory and experimental evaluation,” Mathematical Pro-
gramming, vol.73, no.2, pp.129–174, May 1996.

[14] A.V. Goldberg and R.E. Tarjan, “Expected performance of Dijkstra’s
shortest path algorithm,” NEC research, Technical Report, 96-062,
June 1996.

[15] J.A. Storer, An introduction to data structures and algorithms,
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