
A Problem Decomposition Scheme for Distributed Problem Solving

Yasuhiko KITAMURA, Shoji TATSUMI, and Takaaki OKUMOTO
Faculty of Engineering, Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, OSAKA 558, JAPAN
�kitamura, tatsumi, okumoto�@info.osaka-cu.ac.jp

S. Misbah DEEN
DAKE Centre, Keele University

Keele, Staffordshire, ST5 5BG, UK
misbah@cs.keele.ac.uk

Abstract

To deal with large-scale and/or geographically dis-
tributed problems, a number of expert systems should
be combined through communication networks, and
distributed problem solving (DPS) techniques are re-
quired to make such a group of expert systems works
effectively. In DPS, if a given problem can be decom-
posed and allocated properly, the performance will
be increased because of high parallelism and small
communication overhead. Most of DPS techniques
so far have been using such problem decomposition
knowledge in explicit or implicit ways, and such
knowledge is assumed to be given a priori. In this
paper, we proposed an automated problem decompo-
sition scheme based on knowledge hierarchy which
can be applied to problem domains where problem
decomposition knowledge is not given a priori.

1 Introduction

To deal with large-scale and/or geographically distributed prob-
lems, a number of expert systems with knowledge bases should
be combined through communication networks, and distributed
problem solving (DPS) techniques are required to make such a
group of expert systems works effectively.

In DPS, problem solvers called agents are distributed and
a given problem to be solved needs to be decomposed and
allocated to all or some of them. For example, Contract Net
Protocol [8] is a communication protocol to assign problems to
appropriate agents based on negotiations among agents. In this
framework, problems are assumed to be decomposed a priori by
users or designers in an explicit manner. Functionally/Accurate
Cooperative(FA/C) DPS system [6] is another canonical exam-
ple of DPS technique, but problems are also assumed to be
assigned to agents implicitly before problem solving starts.

There has been little work that addresses automated problem
decomposition [2] although it shows a crucial aspect for DPS.
If a given problem can be decomposed and allocated properly,

the performance will be increased because of high parallelism
and small communication overhead among agents.

In this paper, we proposed an automated problem decom-
position scheme based on knowledge hierarchy which can be
applied to problem domains where problem decomposition
knowledge is not given a priori. In our scheme, when an
agent receives a problem, referring the knowledge hierarchy,
it autonomously decomposes the problem and allocates the
decomposed subproblems to available agents. Moreover, for
cases where there are several alternatives to decompose a prob-
lem, we propose several selection strategies to reduce them to
one.

In section 2, we give a rigid formulation of DPS based on
the state space graph representation. In section 3, we present a
distributed inference scheme called diffusing search [4] which
is the base of our proposed scheme. When the given problem
is a large-scale one, without problem decomposition, agents
with this inference scheme have to search a huge search space
generating a big amount of communication which is almost
intractable. To cope with this drawback, we propose a problem
decomposition scheme using an example of travel planning in
section 4.

2 Formulation of DPS

In this section, we present a formulation of DPS based on the
state space graph representation [1].

2.1 Problem and Solution

Non-AI problem solving can be depicted as a deterministic
process where the sequence of operators for problem solving
has been determined beforehand unambiguously, for example,
in a form of program. The process thus simply follows the
sequence of operators and there are no alternative operators to
choose. On the other hand, AI problem solving can be depicted
as a non-deterministic process. The process is required to
choose an operator out of multiple alternatives and the choice



may not be always correct. When it makes a wrong choice, it
may lead to getting stuck and a way to escape from that is to
get back to the point of wrong choice and to choose another
one out of other alternatives. Therefore, AI problem solving
can be formalized as a search process which finds a path on a
graph as follows.

Definition 2.1 (Problem and solution) A problem � is given
as 4-tuple� ���� �� � � � where� is a non-empty set of states,
��� � � �� is a set of operators, each of them specifies a state
conversion, ���� �� is the initial state, ��� �� is a set of goal
states. The tuple � ��� � can be viewed as a graph called
state space graph. A problem is said to be finite if the state
space graph is finite. A solution is given as any path from the
initial state to a goal state in the state space graph. In other
words, it is a sequence of operators that converts the initial
state into a goal state. �

2.2 Agent, Community, and Knowledge Distri-
bution

DPS deals with problem solving by multiple agents. For
example, let us assume a system, which offers international
travel information, consisting of multiple agents. Each agent
offers information of only one country but it cooperatively
works with other agents when it is asked to find an international
travel plan. As this example, the knowledge, namely a set
of operators, to be required for problem solving is distributed
among agents. The local knowledge of each agent therefore
can be depicted as a graph which represents the range of state
conversions by the agent. More formally, we can define them
as follows.

Definition 2.2 (Knowledge) The local knowledge of agent 	 is
denoted by
� �� ��� �� �where�� and���� ������ are
a set of local states and local operators of agent 	 respectively.
A set of agents is called community and the knowledge of
community � is defined as 
� �� �� � �� �, where �� ��

���
�� and �� �

�
���

��, in words, that is the sum of
local knowledge of agents in the community. �

Wehere define several concepts about knowledge distribution
in a community: coverage, joint state, and redundancy, that
characterize a community, namely a DPS system.

Coverage As a relation between a problem and knowledge
of agent or community, we define a concept coverage.

Definition 2.3 (Coverage) For a problem� �� ���� �� � � �

and a community �, we say the knowledge of agent 	�� ��,

� �� ��� �� �, covers the problem if � � ��. Likewise,
we say the knowledge of community �, 
� �� �� � �� �,
covers the problem if � � �� . �

Joint State We then introduce a concept, a joint state, that
is a state shared by multiple agents and that reflects relations
between knowledge of an agents and that of another.

Definition 2.4 (Joint state) For knowledge of agent 	,
� ��
����� �, and that of ���� 	�, 
� �� ��� �� �, if there exists
a state � which satisfies � � �� � ��, then � is called a joint
state of agent 	 and �. �

Definition 2.5 (Joint knowledge) Joint knowledge of agent 	,

�, is denoted as � ��� � � where � is a community, a set
of agents. This joint knowledge is said to be complete if

�� � ��� �� � � � �		 : � � �� � �� 
 ��� �� � 
���

In words, a complete joint knowledge means the agent knows
all the joint states and all the agents which share them.

Redundancy Finally, we define a concept redundancy, which
classifies overlap of knowledge among agents, as follows.

Definition 2.6 (Redundancy) For a community �, if it satis-
fies �	� � � � : 	 �� � � �� � �� � �, the community is said
to be non-redundant, and if it satisfies �	� � � � : �� � ��,
the community is said to be completely redundant. Otherwise,
the community is said to be partially redundant. �

3 Diffusing Search

The diffusing search [4] is an inference method for DPS based
on distributed search. The search proceeds as in a uniform
manner and the completeness of search is guaranteed.

3.1 Diffusing Search System

Before we describe the diffusing search algorithm, we clarify the
definition and assumptions on systems on which the algorithm
is executed.

Definition 3.1 (Diffusing search system) A diffusing search
system is a community composed of a finite number of agents.
One of agents is called the root agent 	���� which submits the
initial problem. 1 Each agent can communicate with any other
agents only by exchanging messages and no message are lost
during communication. �

Generally speaking, the characteristics, the capability of
producing solutions or the efficiency of a diffusing search
system vary depending on its knowledge distribution. In this
section, we assume a diffusing search system which satisfies
the following assumptions.

Assumption 3.2 Problems are finite and covered by the diffus-
ing search system. �

Assumption 3.3 Each agent has complete joint knowledge. �

Assumption 3.4 The diffusing search system is non-redundant.
�

1A user can be the root agent.



3.2 Diffusing Search Algorithm

The diffusing search algorithm is based on distributed search
and can be viewed as a combination of intra-agent local search
and inter-agent global search. A local search is executed by a
single agent to find partial solution paths inside its local knowl-
edge and the global search specifies message exchange among
agents to control local searches to obtain a global solution
path. So far these two search algorithms have been investigated
independently in AI [7] and distributed algorithm [3] respec-
tively. We here describe how to integrate these algorithms as
the diffusing search algorithm.

3.2.1 Local Search

The local search is based on classical search algorithm [7]
and executed by a single agent. A classical search algorithm
is initiated by giving the initial state and terminated with
� ������� � if it finds a goal state or with � �����	� �

if it fails. In the diffusing search algorithm, the local search
can be terminated with a joint state which is a candidate of
intermediate state on a path to goal state when the agent cannot
find the goal state by itself, so we extend the classical algorithm
to the one which returns one more result � �
������;��
where � is a set of joint states. The algorithm of an agent 	 is
as follows.

� Database

– �� �� ���. A set of open states that are candidates to be
expanded.

– ���� ���. A set of closed states that have been expanded.

– ���� �� � ���. A set of pointers between two states.
���� ��� � �� means a path from �� to �� has been found.

– 	��� ���. A set of joint states that have been found.

� Function

– �� : 2�� � �� . A function to choose a state from �� to
expand.

� Algorithm: �
��� ���	����� �

Step1 Put ��� in �� . Set 	� � �.

Step2 If�� � � then

(a) If 	� � � then end with 
 �����	� � else end with

 �
������;	��.

Step3 �� ����� �. Add � in ��. Remove � from�� .

Step4 If � � � then end with
 ������� �.

Step5 For each of �� � ����� �����,

(a) If �� 	� �� 
�� then add �� in�� and ��� ��� in �� .

Step6 If 	���� 	� � then add � in 	�.

Step7 Go to Step2.

This algorithm is initiated by giving ��� as the local initial
state and terminate with a local search tree, denoted by �

����� � which has the local initial state ��� as the root
node.

3.2.2 Global Search

The global search algorithm specifies message passing among
agents to invoke local searches to obtain a global solution.
We show below the global search algorithm of agent 	 as an
extension of a conventional distributed search algorithm [3].

� Message

– <search;�>. To request a problem
 ��� �.

– <found>. To notify that the agent has found a goal state.

� Database

– �	�� ���. A set of joint states that have been found.

– ���� �� � ��. A set of pair lists of a local initial states and
an agent which requested it. ��� �� � �� means that agent �
requested a problem
 ��� � to agent �.

� Algorithm


Root agent�

State1 When initializing

Step1 Send 
 search;��� to agent �� which has the
initial state �� in its local knowledge.

State2 When receive 
 found �.

Step1 Halt.


General agents�

State1 When receive 
 search;�� from ��

Step1 If � � �	 then wait else add ��� ��� in ��.

Step2 Execute local search���.

(a) If it ends with 
 success � then send

 found � to all agents.

(b) If it ends with
 continue;	�� then for each
of �	 � 	�, if �	 	� �	 then add �	 in�	 and send

 search;�	� to all � � ����	�.

(c) If it ends with
 failure � then wait.

State2 When receive 
 found �

Step1 Halt.

4 A Problem Decomposition Scheme
Based on Knowledge Hierarchy

In this section we describe a problem decomposition scheme
using travel planning problem as an example.

4.1 Travel Planning

Travel planning problem described here is to find a travel route
that is spreading very wide area like an international travel
route. The knowledge required to solve this problem is very
large, various according to the means of transportation, and
geographically distributed. It is almost impossible to maintain
this knowledge in a single centralized knowledge base and it is
reasonable to solve this problem by cooperations of distributed
knowledge bases, agents, each of which maintains a part of
the knowledge according to the means of transportation (bus,
train, ship, aircraft, etc) or the domain it covers (inter-country,
country, county, town, etc).

This travel planning problem can be viewed as finding a
path from a starting place to a goal place on a state space



graph where places and transportations between two places are
represented as states and operators respectively. We, therefore,
can use the diffusing search scheme to find such a path from
the knowledge that is distributed among agents, but actually we
would face a big amount of communication overhead among
agents if we use the diffusing search algorithm naively because
the state space graph would be very big and be maintained by
many agents.

To reduce the communication, we here propose a prob-
lem decomposition scheme by using knowledge hierarchy and
further improve the decomposition by using several selection
strategies. By this scheme, an agent does not need to submit
messages for all the joint states that are connected from the
local initial state, but submits a message for a single selected
joint state. Only when the selected joint state does not pro-
duce a solution, a succeeding message is submitted for another
alternative joint state.

4.2 Knowledge Hierarchy

For our world-wide travel planning problem, we extend our
representation of a state � into a list consisting of hierarchical
domains such as ��1� �2� . . . � �	�. We say �
 is domain name at
level-�.

For example, we can represent the Heathrow airport as
�����
��
�� ����	
��, each of which represents the domain
name of country, county or state, and town respectively instead
of just ����	
� as before.

By this extension, we can classify problems accord-
ing to their level and domain. When a problem � ��
��1
� � �

2
� � . . . � �	� �� ��

1
�� �

2
�� . . . � �	�� � is given, we say � is a

problem of domain ��1
� � . . . � �
�1

� � at level-� if the following
conditions are satisfied. 2

�
�

� � �
�

�
if � � �

�
�
� �� �

�
� if � � �

For ex-
ample, � ���� ������� ������� ���� ������� ���������� �

is a problem of domain ����������� at level-3. �

�����
��
�� ����	
��� ������� ����� ��	���� � is a prob-
lem of domain �
	�� at level-1. 3

We can classify operators as well as problems. We say an
operator � � ���1

� �
2
� . . . � �	 �, ��1

�� �
2
� � . . . � �	� �� is an operator

of domain ��1
� . . . � �
�1

 � at level-� if it satisfies the following
condition.

�� � ��� if � � �

�� �� ��� if � � �

We here define the following concepts.

Definition 4.1 (Separation and Hierarchy) If every operator
of an agent is a level-� operator of the same domain, then the
agent is said to be separated and called an agent in the domain
at level-�. If all the agents in a community are separated, then
the community is said to be hierarchical. �

2We assume a problem has only one goal state.
3We call the domain name of level-0 world as a special case.

When a community is hierarchical, for an agent at level-�,
agents and domains at level-��� �� are called upper agents and
upper domains respectively, and agents and domains at level-
��� �� are called lower agents and lower domains respectively.
Likewise agents and domains at level-��� �� are called peer
agents and peer domains.

Joint states in an agent also can be categorized according to
the level of agent with which they are shared. For a level-�
agent, its upper joint states are shared with level-��� �� agents,
its peer joint states are shared with level-��� �� agents, and
its lower joint states are shared with level-��� �� agents. In
general, an upper joint state of agent 	 to agent � is identical
with a lower joint state of agent � to agent 	, but as an exception,
we introduce indirect upper joint states. For an indirect upper
joint state, there exists no corresponding lower joint state in the
upper agent but a path from it to a lower joint state in the other
peer or lower agent at least.

Example 4.2 We show an example of hierarchical community
in Figure 1. In this example, there are five separated agents;
agent BA in world domain at level 1, agents BR and NE in
�UK� domain at level 2, and agent PMT in �UK�Staffs� do-
main and LUG in �UK�London� domain at level 3. For agent
NE, agent BA is an upper agent and the upper joint state
is �UK�London�Heathrow�, agent BR is a peer agent and
the peer joint state is �UK�WestMidland�Birmingham�,
agent PMT is a lower agent and the lower joint state is
�UK�Staffs�Hanley�, and agent LUG is also a lower agent
and the lower joint state is �UK�London�Heathrow�. No-
tice for LUG, BA can be an upper agent (whose joint state
is �UK�London�Heathrow�) even though the difference be-
tween the levels is 2. An example of indirect upper joint state is
�UK�London�Euston� of BR to �UK�London�Heathrow�
of BA. There is a path connects them in LUG.

4.3 Problem Decomposition

When an agent receives a problem, it can solve it if it has a path
to the goal state in its local knowledge, or it can decompose
it, for example, a problem � �� � �� � into � �� � �� � and
� �� � �� � if it has a joint state �� . In this sense, to decompose
a problem can be viewed as to find a joint state.

As we have shown in the previous section, there
are three types of joint states; upper, peer, and
lower joint states. When a problem � �� � �� ���
��1
� � . . . � ��� � . . . � �	� �� ��

1
�� . . . � ���� . . . � �	�� � of level-� is given

to an agent at level-��, by observing the level relation between
the agent and the problem, we can select one type out of three
by using the following rules.

1. If � � ��, then choose an upper joint state �� that is
identical with ��1

� � . . . � ����1
�

� ���
�
� . . . � �	� �.

2. If there is a lower joint state �� that is identical with
��1
�� . . . � ����1

� � ����2
� � . . . � �	� �, then choose it.

3. Otherwise, choose a peer joint state �� that is identical
with ��1

� � . . . � ����1
� � ���� � . . . � �	� �.



[Japan,Chiba,Narita]

[UK,London,Heathrow]

BA in world at 1

PMT in [UK,Staffs] at 3

BR in [UK] at 2 NE in [UK] at 2

[UK,Staffs,Stoke]

[UK,Staffs,Keele] [UK,Staffs,Hanley]

LUG in [UK,London] at 3

[UK,London,Euston]

[UK,WestMidland,Birmingham]

Figure 1: Joint states.

When there are multiple joint states to be selected, we can
use one of several strategies described in next section for a
further selection to a single joint state.

When a joint state �� is selected for a problem � �� � �� �,
the problem is decomposed into � �� � �� � and � �� � �� �,
and the former one is solved by the agent and the latter one
is assigned to the corresponding agent with which the joint
state is shared. However, there is an exception when the
selected joint state is an indirect upper joint state ��� . In this
case, the problem is decomposed into three partial problems
such as � �� � ��� �, � ��� � �� � and � �� � �� �, and the
second and the third ones are assigned to the appropriate agents
respectively.

Example 4.3 Let us assume a prob-
lem � �UK�Staffs�Keele�� �Japan�Chiba�Narita� �
is given to a hierarchical community as shown in Figure 1. The
problem is sent to PMT agent at first, as it has the initial state
�UK�Staffs�Keele� in its local knowledge. Since the level
of the problem is higher than that of the agent, this problem is
decomposed and assigned to an upper agent. There are two
joint state candidates to select. Let us see each case.

Case1 (�UK�Staffs�Hanley�): the problem is decom-
posed
into� �UK�Staffs�Keele�� �UK�Staffs�Hanley� � and
� �UK�Staffs�Hanley�� �Japan�Chiba�Narita� � and
the first one is solved by PMT and the second one is assigned
to NE. Then, NE further decomposes the partial problem into
� �UK�Staffs�Hanley�� �UK�London�Heathrow� � and
� �UK�London�Heathrow�� �Japan�Chiba�Narita� �
and the latter one is assigned to BA.

Case2 (�UK�Staffs�Stoke�): the problem is decomposed
into � �UK�Staffs�Keele�� �UK�Staffs�Stoke� � and

� �UK�Staffs�Stoke�� �Japan�Chiba�Narita� � and
the first one is solved by PMT and the second one is assigned
to BR. Then, BR further decomposes the partial problem
into � �UK�Staffs�Stoke�� �UK�London�Euston� �, �
�UK�Staffs�Euston�� �UK�London�Heathrow� �, and
� �UK�London�Heathrow�� �Japan�Chiba�Narita� �
because the upper joint state �UK�London�Euston� is indi-
rect. As the level of second partial problem is 3 and its domain
is �UK�London�, it is assigned to LUG, and the third one is
assigned to BA as in case 1. �

4.4 Selection Strategies

In the previous section, we described how to reduce the candi-
dates of joint states by using knowledge hierarchy. However,
we still may have several candidates and need to reduce further
to one candidate. In this section, we present several strategies
to reduce them to one.

By Using Local Search When no information to select a joint
state is available, the agent can select the first joint state obtained
by using the local search of the diffusing search algorithm.

By Using Predefined Knowledge A user or system designer
can specify how to decompose problems beforehand. A format
of the knowledge representation may be like a tree shown
in Figure 2, that has the similar structure as the knowledge
hierarchies. A leaf nodes is a description of a joint state, shown
in Figure 2(b), which includes agent name that share the joint
state, and additional parameters such as approximate travel
time, travel cost, number of transfer, etc. For example, when
the goal state of problem is ���� �����������������, the joint
state to be selected is ��
��by referring this discrimination tree.
When the goal state of problem is ���� �
��
�� �
����	��
(Somewhere in London), the joint state is ����
�. When
there are multiple leaf nodes for a specified domain, one joint
state can be selected by referring parameters. This extends the
flexibility of the selection.

By Learning The information contained in the discrimination
tree given by users or designers is static and could be incorrect
or become out-of-date. By using leaning technique, we can
keep the information up-to-date or build such information from
scratch when there is no information given beforehand. Once an
agent finds a solution, it records the result in the discrimination
tree for future problem solving.

By Inquiring Information obtained by learning is limited
because it is a passive method only based on the results the
agent has obtained even though the other agents may have more
or better information. Therefore, by inquiring other agents, the
agent can select a better joint state. On the other hand, this
scheme has to pay communication cost, and may cause chain
reactions of inquiring.



London

Stafford

Newcastle

France

Japan

Stafford

Stoke

Euston

Manchester

Euston

Gatwick

Euston

Gatwick

world

UK Staffs

Shrops Telford

(a) Discrimination Tree.

[Joint State, Agent Name, Parameters]

(b) Leaf Node Description.

Figure 2: A discrimination tree.

By Informing If agents inform each other, in other words,
if they exchange their information of discrimination trees each
other, they can get more information to select a better joint
state. This method is useful also when a new agent joins in the
community, the agent can advertise what it can do by informing
other agents. However, informing as well as inquiring causes
to increase the communication overhead [5].

4.5 Multiple Selection

Though we have discussed how to select a single joint state to
decompose a problem, when it is difficult to reduce the candi-
dates to one and when it seems multiple candidates have almost
the same possibility to lead a solution, it is possible to select
multiple joint states and to assign multiple partial problems
in parallel. Moreover, in the early stage of problem solving
when information in the discrimination tree is small, to assign
multiple problems in parallel is a way to get more information
than to assign a single one. For example, in Example 4.3,
there are two joint state candidates, ���� ������� ������� and
����������� ��
���, for �� agent, and it is possible to assign
the former problem to �� and the latter problem to !".

However, multiple assignments increase communication
and may generate redundant process. In the above ex-
ample, both of �� and !" request the same problem
� ���� �
��
�� ����	
��� ������� ����� ��	���� � to !#.
The issue of how many partial problem should be assigned
depends on the quality of expected solutions and the congestion
of the communication channel, and we need a further study for
this issue including techniques to reduce redundant processes.

5 Conclusion

Problem decomposition is an important process for effective
large-scale problem solving. In the conventional DPS tech-
niques, the problem solving knowledge is assumed to be given
a priori. In this paper, we presented a problem decomposition
scheme for cases that such knowledge is not given. In our
scheme, agents autonomously decompose and allocate prob-
lems by using the knowledge hierarchy. We also presented
several strategies for the cases where there are several alterna-
tives for problem decomposition. For our future study, we are
planning to build a prototype to evaluate our proposed scheme.

References

[1] Ranan B. Banerji. Artficial intelligence: a theoretical
approach. Elsevier North Holland, Inc., 1980.

[2] Alan H. Bond and Les Gasser. An analysis of problems and
research in DAI. In Alan H. Bond and Les Gasser, editors,
Readings in Distributed Artificial Intelligence. Morgan
Kaufman Publishers, Inc., San Mateo, California, 1988.

[3] To-Yat Cheung. Graph traversal techniques and the max-
imum flow problem in distributed computation. IEEE
Transactions on Software Enginerring, SE-9(4):504–512,
July 1983.

[4] Yasuhiko Kitamura and Takaaki Okumoto. Diffusing in-
ference: An inference method for distributed problem
solving. In S. M. Deen, editor, Cooperating Knowledge
Based Systems 1990, pages 79–94. Springer-Verlag, 1991.

[5] Yasuhiko Kitamura, Baochuang Zheng, Shoji Tatsumi,
Takaaki Okumoto, and S. Misbah Deen. A cooperative
search scheme for dynamic problems. In Proceedings
1993 IEEE International Conference on Systems, Man and
Cybernetics, Vol.5, pages 120–125, 1993.

[6] Victor R. Lesser. A retrospective view of fa/c distributed
problem solving. IEEE Transactions on Systems, Man,
and Cybernetics, 21(6):1347–1362, November/December
1991.

[7] Judea Pearl. Heuristics. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

[8] Reid G. Smith. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Transactions on Computers, C-29(12):1104–1113,
December 1980.


