354

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 3 MARCH 1996

{PAPER Special Section of Selected Papers from the 8th Karuizawa Workshop on Circuits and Systems

Implicit Representation and Manipulation of

Binary Decision Diagrams

Hitoshi YAMAUCHI!, Nagisa ISHIURA”, and Hiromitsu TAKAHASHI!, Members

SUMMARY This paper presents implicit representation of bi-
nary decision diagrams (implicit BDDs) as a new efficient data
structure for Boolean functions. A well-known method of repre-
senting graphs by binary decision diagrams (BDDs) is applied to
BDDs themselves. Namely, it is a BDD representation of BDDs.
Regularity in the structure of BDDs representing certain Boolean
functions contributes to significant reduction in size of the result-
ing implicit BDD representation. Since the implicit BDDs also
provide canonical forms for Boolean functions, the equivalence
of the two implicit BDD forms is decided in time proportional to
the representation size. We also show an algorithm to manipulate
Boolean functions on this implicit data structure.

key words: binary decision diagram (BDD), representation of
Boolean functions, logic design verification, logic synthesis, im-
plicit representation of graphs

1. Introduction

A binary decision diagram (BDD) is a graph based data
structure for representing Boolean functions. It is de-
vised by Akers[1], and has been widely used in the area
of computer-aided design of VLSI since an effective ma-
nipulation algorithm was developed by Bryant[2]. The
BDD brought about great improvement in logic design
verification [3], logic synthesis, test generation [4], etc.
However, as BDDs are used in more sophisticated ap-
plications dealing with larger instances, we come to en-
counter BDDs whose size exceeds the memory capacity.
This arouse a demand for yet more succinct representa-
tion for Boolean functions.

In this paper, we propose implicit representation
and manipulation of BDDs as an efficient way of dealing
with Boolean functions. The graph structure of a BDD
is indirectly expressed in terms of Boolean functions by
giving each node a binary code, instead of expressing
edges in the graph one by one. Then the Boolean func-
tions which implicitly represent the original BDD are
expressed in the form of multiple-output BDDs.

The size of the implicit representation does not nec-
essarily depend on the original BDD size and regularity
in the original BDD structure leads to drastic reduction
in resulting implicit representation. Since the canon-

Manuscript received June 29, 1995,

Manuscript revised September 28, 1995.

"The authors are with the Faculty of Computer Science
and System Engineering, Okayama Prefectural University.
Soja-shi, 719-11 Japan.

W The author is with the Faculty of Information System
Engineering, Osaka University, Suita-shi, 565 Japan.

icity of the representation is preserved, the equivalence
checking on the implicit representation is decided in
time proportional to the representation size.

Experimental results show that the asymptotic be-
haviors of the representation sizes of majority, adder
and selector functions are largely improved. The mem-
ory requirement on many of the MCNC and ISCAS
benchmarks are also reduced.

This paper is organized as follows: After formal-
izing BDD in Sect. 2, we describe the details of the im-
plicit representation of BDDs in Sect.3. We give al-
gorithms to manipulate the implicit representation in
Sect. 4, and show some experimental results in Sect. 5.

2. Binary Decision Diagrams
2.1 OBDD and LOBDD

A binary decision diagram (BDD) is a data structure
for representing Boolean functions using an acyclic di-
rected graph.

Figure | shows examples of BDD representation;
(a) and (b) are both BDDs representing two Boolean
functions f = wxszy + 27, ¢ = x3 + w2 + ;. The
non-terminal nodes in a BDD are labeled by variables
(€ {z1,22, -+, x,}) and are called variable nodes. The
variable of variable node v is denoted by var(v). The
terminal nodes in a BDD are labeled by Boolean val-
ues (€ B = {0,1}) and are called constant nodes. The
Boolean value of the constant node v is denoted by c(v).
The number of the nodes in a BDD is referred to as the
size of the BDD. A BDD has ordered m initial nodes
denoted as ¢ = (¢, -+,n). For each node v is defined
the level of v (denoted by I(v)) as follows:

(a) OBDD
Fig. 1

(b) LOBDD

Binary decision diagrams.

YAMAUCHI et al: IMPLICIT REPRESENTATION AND MANIPULATION OF BINARY DECISION DIAGRAMS

l{v)=0 .-+ is a constant node,
if var(v) = z; then l{v) = j
--.v is a variable node.

Each variable node has ordered two edges called the 0-
edge and the /-edge of the node. The nodes connected
to the O-edge and the 1-edge are represented as e(v,0)
and e(v, 1), respectively. In the figures in this paper, the
0-edge of a node is shown on the left side of the node,
and the l-edge on the right side. The BDDs handled in
this paper are of a particular class called Ordered BDDs
(OBDDs), in which each node v satisfies the following
condition:

I(v) > Ue(,0)), I(v) > l(e(v,1)).

The BDDs in Fig. 1 are both OBDDs.

Each node in an OBDD represent a Boolean func-
tion. The Boolean function f, represented by node v is
defined as follows:

...y is a constant node,

c(v)
fo= { vaq-(v) . fe(u,O) + 'UCLT('U) : fc(v,l)

... is a variable node.

An OBDD represents an n-variable m-output Boolean
function (fi,, <) fim)-

An OBDD is called a levelized OBDD (LOBDD) if
each variable node v satisfies

I(e(v,0)) =1(v) = 1, le(v,1)) =1(v) 1.

Namely, an LOBDD is an OBDD whose edges do not
“jump over” levels. An LOBDD in Fig.1(b) repre-
sents the same Boolean functions represented by the un-
levelized BDD in (a). The level of an initial node of an
LOBDD is always n. We mainly deal with LOBDDs in
this paper. We reformulate the LOBDD as follows.

Definition 2.1: An LOBDD L representing an n-
variable m-output Boolean function is a 4-tuple L =

(IV, E, c, ;), where

o N = (No,---,Np): N; is the set of nodes of level
Jj

e c=(e, ,e,): ej{v,x) is a mapping N; x B —
N;-; which represents the node connected to z-
edge of node v.

e c: c(v) is a mapping Ny — B which represents the
Boolean value labeled to constant node v.

® i= (i1, **,im): i € Ny is an initial node. mi

Two nodes u and v of level j in an LOBDD are
equivalent if the functions represented by u and v are
equal. Namely, v = v if

c(u) = c(v) -+ -u,v are constant nodes,
e;j(u,0) = e;(v,0) and ¢;(u,1) = e;(v,1)
...u,v are variable nodes.

355

An LOBDD is called reduced if the LOBDD has
no equivalent nodes. The process of transforming
an LOBDD into the reduced form by eliminating all
the equivalent nodes is called reduction. The reduced
OBDD form [2] is obtained from the reduced LOBDD
by eliminating all the redundant nodes (where a redun-
dant node is a node v satisfying e(v,0) = e(v,1)). As
well as the reduced OBDDs, the reduced LOBDDs are
canonical forms for Boolean functions under a fixed
variable order.

2.2 Operations for LOBDD

Typical operations for OBDD and LOBDD are Boolean
binary operations, Boolean unary operations, equiva-
lence checking, and substitution. The most fundamen-
tal and important ones among them are Boolean binary
operations.

A Boolean binary operation for LOBDD is an
operation which generates LOBDD Ly, representing
Boolean function fog from two LOBDD L and L, rep-
resenting Boolean function f and g, respectively, where
o is an arbitrary Boolean operators such as AND and
OR. These operations are achieved based on an al-
gorithm that recursively traverses given two BDDs[2].
In this paper, we formalize the algorithm for Boolean
binary operation using a notion of product LOBDDs,
which is a generalization of the recursive algorithm.

A product LOBDD is a counterpart of the prod-
uct finite state machine or the product automaton. The
Fig.2 illustrates how the product (AND) LOBDD of
the two LOBDD:s are constructed.

1. For each » and v/, where u is a node of level [in
the first LOBDD and ' is a node of level [in the
second LOBDD, a node (u,u') is created as a node
of level | in the product LOBDD.

2. Create an z-edge from node (u,v’) to (v,v') in the
product LOBDD, if z-edge of node u in the first
LOBDD points to node v and z-edge of node %’ in
the second LOBDD points to node v'.

3. Set the Boolean value of constant node (v,v’) to
c(v) o c(v'). If the o represents AND, for example,

Fig. 2 Product LOBDD.

356

set the value of the constant nodes in the product '

LOBDD as shown in Fig.2.

Formal definition of the product LOBDD is as fol-

lows. Here, it is assumed that each LOBDD has only
one initial node and represent only one Boolean func-
tion.
Definition 2.2: A product LOBDD prod(Lys,Lg,0)
= (N,e,ci) generated form two LOBDD Ly =
(Nf,ef,cf,if) and L, = (N9,e9,c9,i9) with respect
to binary operator o is defined as follows.

o N;=NJ x N{.
o (1, v),2) = (] (v,), €d(v*, %))
o c((¥,9%)) = (y') o co(y?).

o i=((i,¥)). O

An LOBDD representing f o g is given by Loy =
prod(Lg, Lg,0).

3. Implicit Representation of BDDs

In this paper, we present implicit ways of representing
and manipulating LOBDDs. We first discuss the implicit
representations of LOBDDs (iLOBDD:s, for short).

3.1 Implicit Representations of LOBDD (iLOBDDs)

We can represent the connectivity in an LOBDD by
Boolean functions by giving a binary code vector to
each node in the LOBDD. For example, let us focus on
the connectivity between levels 5 and 4 of the LOBDD
in Fig.3(a). First of all, each node is given a binary
code unique in its level. The codes are shown on the
right side of the nodes in the figure. The 0-edge and the
I-edge of node 01 of level 5 connect to nodes 00 and
11 of level 4, respectively. Let Boolean function 85(y, x)
denote the node of level 4 connected to the xz-edge of
node y of level 5. Then, this connectivity is represented
as

65((0’ 1),0) = (0,0), 65((05 1)1 1) = (1! 1)

(a) LOBDD.

(b) Implicit representation.

Fig. 3 LOBDD and its implicit representation.

1EICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 3 MARCH 1996

We can represent all the other edges in the same way.
Then 65 can be regarded as a 3-input 2-output Boolean
functions. In the form of a Boolean expression,

65((y1,90),) = (65,1 ((¥1, %),), 85.0((¥1, ¥0), T))
= (y1y0 + 112 + Yo, Y170 +),

64, 53 and 65 are computed in the same way, all of which
turn out equal to 85 in this example. For levels between
1 and 0, we have

61((v1, v0),) = (z, N T).

Since the Boolean values of constant nodes 00, 01 and
10 are 0, 1 and 1, respectively, we can represent those
Boolean values as a 2-input 1-output Boolean function

A(¥1, %)) = v1 + yo.

In this way, the graph structure of an LOBDD is rep-
resented by Boolean functions §; and A. We represent
those Boolean functions by a multiple-output OBDD.
We call this OBDD an :LOBDD (see Fig.3(b)).

In general, :LOBDD [representing an n-variable
m-output LOBDD L is defined as follows, where the
nodes of level j of the LOBDD L are coded by w; bits
and oj: N; — B") represents the code of a node of level
J-

Definition 3.1: zLOBDD I representmg n-variable m-
output LOBDD L = (N e,c,z) under coding ¢ =

(6. -,0on) is a 3-tuple I = (6 A, 3) where

b= (61,+-+,6,): mapping §;: BY x B — B¥i-!
represents the code of the node connected to a node
of level j via an edge of the node which satisfies

bi(oj(v), &) = oj_1(e;(v,x)).

e)\ : B™ — B is the Boolean value of a constant
node which satisfies A(ag(v)) = c(v).

e s=(sy,---,8,) represents initial nodes, and satis-
fies 85 = U,,(ij). O

The Boolean function represented by an iLOBDD
is defined as the Boolean function represented by the
LOBDD which is represented by the i LOBDD implic-
itly. The total size of the multi-output OBDDs repre-
senting Boolean functions constructing an iLOBDD is
called the size of the iLOBDD.

The following two factors contribute to reduction
of the size of iLOBDDs.

i) Similarity of the connectivity among different pairs
of levels: As in Fig.3, if connectivities are simi-
lar (or equal) among different pairs of levels, sub-
graphs of the OBDD implicitly representing these
connections are shared and the number of the nodes
are reduced.

ii) Regularity of the connectivity between each pair

YAMAUCHI et al: IMPLICIT REPRESENTATION AND MANIPULATION OF BINARY DECISION DIAGRAMS

of levels: If the connection between a pair of lev-
els is regular, Boolean function §; representing this
connection becomes simple and makes the OBDD
small.

In the case of the OBDDs and the LOBDDs, each
Boolean function has a unique reduced form under an
arbitrary fixed variable order. The iLOBDDsare also
canonical under the following conditions.

Proposition 3.1: Two :LOBDD I; and I, representing
the same Boolean function are congruent if the follow-
ing conditions are satisfied.

1) I; and I, represent reduced LOBDDs with the same
variable order.

2) Iy and I, represent LOBDDs under the same cod-
ing.

3) For the codes not representing any node, the values
of functions of Iy and I, are equal. 0

1) is a condition where the forms of the LOBDDs
represented by Iy and I, are congruent. Under the con-
dition 2), the value of §; and A for the codes represent-
ing nodes are unique. 3) ensures that the values of the
functions are equal for all the codes. The three condi-
tions thus guarantee that functions 8; and A of Iy and
I, match completely.

In order to make 3) hold, we only have to define
the values of the functions as O for those codes that do
not represent any nodes. This condition is also satisfied
by deciding the values of the functions using generalized
cofactor [9].

3.2 Coding of Nodes

Memory efficiency of :LOBDD depends greatly on how
the nodes are coded. In this paper, we propose two
coding methods for iLOBDD, named a minimum path
coding and a binary coding. These coding methods have
the following features.

i) Given an LOBDD, the codes for the nodes are de-
termined uniquely.

ii) There are implicit algorithms that convert an

iLOBDD of an arbitrary coding into the i{LOBDD
of these codings.

A consequence of property i) is that the {LOBDD rep-
resenting a given LOBDD is unique. Thus a iLOBDD
is a canonical representation of a Boolean function if
the LOBDD represented by the :LOBDD is a reduced
LOBDD. We call these codings standard codings of
tLOBDDs.

Minimum path coding
The minimum path coding uses [log(m + 1)] +

357

D
0000 0100t 0ot
N 7~/
0100000 OlOOlll

(a) Minimum path coding.

(b) Binary coding.

Fig. 4 Standard codings.

(n — j) bitst to represent a node in level j of an n-
input m-output LOBDD. The code o(v) for a node v
is determined according to the following rule (refer to
Fig. 4 (a)).

i) Binary representation of k is assigned to the k-th
initial node s.

ii) If the z-edge of node u is connected to node v,
the code of node v is determined as o(u)||z which
is the concatenation of o(u) and x. If more than
two nodes (uy, 1), -+, (v, zx) satisfy 6(u;, ;) = v
(i=1,---,k), then the code of v is determined as
o(v) = min {o(u1)||z1,- -, 0(ur)||zx}, where min
chooses the code whose value as an integer is the
smallest.

Binary coding

If there are W; nodes in level j of an LOBDD, the
binary coding uses [log(W; + 1)] bits! to code a node
in level 7. The rule of this coding is defined as follows
(refer to Fig. 4 (b)).

i) Give ascending sequential numbers to the nodes of
the LOBDD by the preorder depth-first traversal
starting from the initial nodes (assuming an arbi-
trary order for the initial nodes).

ii) For each level j, sort the nodes of the level in the as-
cending order of the number given in i), and assign
the binary expressions of 1, - - -, W; to the nodes ac-
cording to the determined order.

3.3 Representation of Multiple Boolean Functions

There are two ways of representing m Boolean functions
simultaneously by :LOBDDs:

i) Represent an m-output LOBDD. (share system)

ii) Represent m 1-output LOBDDs. (split system)

~ (see Fig. 5).

tWe need [log N + 1] bits to code N nodes because we
exclude code 00---0 for notational and implementational
convenience.

358

arel I "m g
zLOBD D

(b) Split system.

,.;::-

(a) Share system.

Fig. 5 Representation of multiple functions.

In the case of explicit LOBDDs, the representation
size is always the larger in the split system because ho-
mogeneous subgraphs remain unshared. However, in
the case of {LOBDDs, the split system is not necessarily
disadvantageous because subgraphs in the OBDDs that
construct an ¢{LOBDD is shared. On the contrary, the
split system may be advantageous in some cases, because
it provides shorter code length and it can reflect the reg-
ularity in the LOBDD of each function. As shown in
the later section, the split system outperforms the share
system on many instances in experiments.

4. Manipulation of :LOBDD

By “implicit manipulation,” we refer to construct-
ing iLOBDD Iy, that represents f o ¢ directly from
iLOBDDs Iy and I, that represents f and g. In this sec-
tion, we propose an algorithm of implicit manipulation
for binary operations, which is the most important and
the most time consuming among operations on BDDs.

4.1 Implicit Manipulation of Binary Operations

In order to achieve binary operations, we have to repre-
sent plural Boolean functions. We assume that objective
Boolean functions are represented by iLOBDDs of the
split system. Namely, we compute a l-output iLOBDD
Ifoq representing f og from two l-output ;:LOBDDs Iy
and I, and a Boolean operator o.

This operation is achieved by constructing the
product LOBDD implicitly from I, and I, in accor-
dance with the definition in Sect.2.2. In this section,
we also present implicit algorithms to achieve reduc-
tion and code conversion (into canonical coding) on
the :LOBDD obtained by the binary operation.

4.2 Construction of the Product :LOBDD

Let the LOBDDs represented by I; and I, be denoted
as Ly and Lg, respectively. We call iLOBDD I repre-
senting prod(Ly, L,, o) as the product iLOBDD of Iy
and [, with respect to the operator o. The algorithm
to construct the product :LOBDD I = (6,/\,;) from

= (6f,M,sf) and I, = (69,)9,s9) is obtained by
converting the definition in Sect. 3.2 to following pro-
cedure.

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 3 MARCH 1996

1) For the initial nodes: s; — sJ]|s?.
2) Repeat 2a) for j =n,---,1.
2a) &;(ysllyg,) — 87 (s, 2)1189 (g, 2).
3) Musllyg) — M (yr) 0 A2(yy).
4.3 Reduction

As mentioned in Sect. 2.1, the reduction of an LOBDD
is to remove all the equivalent nodes in the LOBDD.
Removal of equivalent nodes is realized by 1) detect-
ing a set of equivalent nodes and choosing an arbitrary
representative and 2) reconnecting all the other edges
connecting to the other nodes in the equivalent node
set to the representative (see Fig.7). Since there is no
edge that jumps over levels, reduction is achieved by
applying the removal of equivalent nodes level by level
starting from level 0 up to level n. The outline of the
procedure of reduction of an LOBDD is as follows.
forj=0ton-1

1) Partition the set of the nodes of level j into the sets
E',--., EP of equivalent nodes.

2) Select a representative node y§ for each E*.

3) For each E*, redirect the edges pointing yf (€
—{vb}) o y5.

The following is the details of the procedure to carry
out 1) to 3) implicitly on :LOBDD.

1) Partition- of the set of nodes into the equivalent
classes:

We use equivalence relation function Ej: BYi x
BYi — B to represent the result of this step. This
Boolean function takes the codes of two nodes as inputs
and returns the value 1 if and only if the two nodes be-
long to the same set. The equivalence relation function
of level j E; is computed as follows.

a) ifj =0 Eo(y,y") — Ay) = AX¥'),
b) ifj >0 Ej(y,y") « Ve(b;(y,2) = 6;(y',),

where p=gmeans p@qandv=u= (v; Qug - -~
'U"_Gé_'(l:) forv= (Ula' t 7”1:) and u = (ula Tt)un)‘

2) Selection of the representative node from an equiva-
lent set:

This operation is realized by using the compatibil-
ity projection[7]. For each of the equivalent sets repre-
sented by an equivalence relation function, the compati-
bility projection chooses the node which is the minimum
when it is regarded as the binary coding of an integer.
The result is obtained in the form of function E(y,’)
that returns 1 if and only if 4 is the representative of
the set that y belongs to. We denote this as

E@,y) « cproj(E(y,).

YAMAUCHI et al: IMPLICIT REPRESENTATION AND MANIPULATION OF BINARY DECISION DIAGRAMS

Fig. 6 Selection of representative nodes using compatibility
projection.

Fig. 7 Reduction of an LOBDD.

(See Fig.6.) A

In the final step, we convert £ into a Boolean func-
tion v that takes code y as input and returns the code
of the representative of the set that y belongs to. This
function of level j is obtained by

T (y) = ('Yj.l (y)7 ot a’)’j,w.,‘ (y))v
viw(y) = 3 (i - Ei(y.9")),

where 3y f(y, z) means existential quantification and is
defined as follows when y = (y1,---,yn).

f(y.x) =y~ Fyn f(y,),
ayif((ylv s Yi—1a Y Yiv L, yn)s:v)
= f((ylv e Yiet, Oa Yig1, "y yn)a "I")
+f((yls o Yi-1 1s Yit1," ", '.Un),-’b')-
3) Reconnection of the edges:

Function 7., that represents the connectivity of
the edges after the reconnection is expressed as

;’+1(Zl’ x) ‘/j(5j+1('.‘l,3«’))

(See Fig.7).
The algorithm of reduction of an iLOBDD is sum-
marized as follows.

) Eo(y,y') — Ay) = Ay')-
2) Repeat 2a) to 2d) for j =1,2,---,n.

359

0001 0100 1001
J+1
01 1
J v
min{00011,01000,10010}= 00011

Fig. 8 Selection of the code in the minimum path coding.

2a) E;_1(y,y') «— cproj(Ej-1 (v, v)).

2b) vj1(¥) = (Vj-1.1)s -y Vi=1,w, ()5
Yic1x @) — ' We Ei-1(y,)).

2¢) 6;(y,2) « vj-1(8;(y, 2))-

2d) E;(y.y") « Y (65(y, @) = 6(y', 2)).

44 Recoding

Figure 8 shows how the minimum path codes of level
j are determined from the minimum path codes of level
7+ 1. The candidates for the code of node v are 00011,
01000 and 10010. Namely, the concatenations of y and
x satisfying &;.+1(y,) = v are the candidates of the code
of v. Chosen from the candidates as the minimum path
code of v is the minimum one when regarded as the
binary coding of an integer. This is also computable
using compatibility projection.

Recoding is achieved level by level, starting from
the initial nodes (level n) down to the constant nodes
(level 0).

1) Give arbitrary codes to the nodes of level n (the
initial nodes).

2) for j=n—1down to 0

2a) For each node y; of level 7, generate a set C}' of
the candidates of the codes that are assignable
to the node.

2b) For each C'j"', choose the minimum code from
the candidates as the representative.

2c) Convert the function of the edges of level j +1
to the new function that outputs the code of
the representative selected in 2b).

The details of each step are as follows.
1) Construction of the set of the candidate codes:

We use relation function C;: BY x BY — B to
represent the result of this step. C;(y,y’) returns 1 if
and only if y’ is a candidate of the new'code of the
node whose original code is y. Relation function C;
is computed by the following procedure, where PC',-.H:

B¥i+1 — BYi+i takes the new code of a node of level
Jj + 1 as an input and returns the original code of the

_ node.

a) ifj=n Cu(y,9') — (y = s1)- (3 = binary(l))

b) ifj<n—1

360

IEICE TRANS. FUNDAMENTALS, VOL. E79-A. NO. 3 MARCH 1996

Table 1 Experimental results (MCNC benchmarks).

circuit in [out | OBDD | LOBDD | LOBDD | i:LOBDD | iLOBDD

(share) (split) (share) (split)
add6 12 7 28 97 221 61 8
alul 12 8 15 96 222 50 3
alu2 10 8 52 117 256 101 21
alu3 10 8 51 119 245 106 19
apla 10 12 88 140 389 146 36
dk17 10 11 54 114 302 100 13
$a02 10 4 80 110 166 122 3i
average 1.00 2.12 4.17 1.78 0.44

Il

Ci(y,y") «— 33y = 841(Pe,,, (), 2)) - (v

ille))

2) Selection of representative codes:

Selection of the representative codes whose integer
values are the smallest is carried out in the same way
as in reduction. By using compatibility projection, we
derive from Cj the relation function Cj; that returns |
if and only if the second argument is the representative
code of the first argument (the original code).

We also generate functions P, (y) and Pe. (y') that
returns the representative code of y and vise versa. These
functions are defined as follows.

Pe,) = (Pe, 1 (0) -+ Poy o (9D
Pe @) — 3y (i Ciw:),
Pe,(v) = (Pe, 1 (0 Py o,)
Pe o(v) < 3y (ui - Cily.y)-
(Note that éj is a one to one relation.)

3) Conversion of the functions representing the edges:
We can obtain the new function &' by &, (y',z) <

Pe, (5i+1(]3¢1+1 (¥'), =)
The following is a summary of the algorithm of the
recoding to the minimum path coding.
1) Ca(y,y') « (y = 81) - (¥ = binary(1)).
2) Generate functions P (y) and P (v').
3) Repeat 3a)to 3d) forj=n-1,---,0
3a) Cj(v,v') «— 3y = ((y 5_i+l(péj“(?7),w))-
(v’ = 9ll2)).
3b) Cj(y,y') — cproj(Ci(y,y"))-
3c) Generate functions Pg (y) and Isé.j(y’).
3) 841(",2) P, (81 (Ps, (), 2).

4) N(y") — MPg, (¥))-

Code conversion to the binary coding is achieved by ap-
plying “code compression” to the :LOBDD of the min-
imum path coding obtained by the algorithm above.
This code compression process is also done implic-

itly [5].

5. Experimental Result

5.1 Size of the Representation

We compared the size of the representation on MCNC
and ISCAS85 benchmarks and some combinational cir-
cuits. This experiment followed the following steps.

1) The reduced OBDD is generated from the circuit
descriptions.

2} The reduced OBDD is converted into the reduced
LOBDD.

3) The iLOBDD is constructed from the reduced
LOBDD.

We used the binary coding for the codes of the
iLOBDD. The values of the functions for the codes
that do not have corresponding nodes were decided by
generalized cofactor operation[9]. We used the SBDD
package of [8] to represent the OBDDs.

Table 1 shows the results on MCNC benchmarks.
The columns show the circuit name, the number of
the inputs, the number of the outputs, the numbers
of the nodes of the reduced OBDD, of the reduced
LOBDD (the share system and the split system) and
of the iLOBDD (the share system and the split system).
Since the negative edges, the inverse edges and the vari-
able shift edges[8] are implemented in the package used
to represent the OBDDs and the iLOBDDs, the numbers
of the nodes shown are smaller than the representation
by the plain OBDDs. In this package, each node re-
quires about 20 bytes. The bottom line of the table
shows the average of the relative performance normal-
ized to “OBDD”. The average involves 32 circuits in-
cluding those fail to appear in the table. We used the
variable orderings in [6] which are optimum in terms
of the OBDD size.

From the comparison between OBDD and
iLOBDD (the share system and the split system), we
can see the effect of the implicit representation method.
Although iLOBDDs of the share system did not do bet-
ter than OBDDs on any benchmarks, :LOBDD:s of the
split system outperformed OBDD on 27 circuits out of
32. On the average, memory requirement was reduced
to 44% of the OBDD.

YAMAUCH]I et al: IMPLICIT REPRESENTATION AND MANIPULATION OF BINARY DECISION DIAGRAMS

Table 2 Experimental result (ISCAS85 benchmarks).

circuit in | out | OBDD | iLOBDD
(split)

C432 || 36 7 1706 964
C499 || 41 32 25331 7274
Cl1355 || 41 32 25331 7274
C1908 || 33 25 27205 31325
average 1.00 0.48

As a way of representing multiple output functions,
the share system is better in explicit LOBDDs but the
split system is better in implicit iLOBDDs. Comparison
between LOBDD and iLOBDD shows that the number
of the nodes are reduced to 11% in the split system.
This is commonly observed across all the other circuits
we made experiments on. We can conclude that the
implicit representation has a significant effect.

Table 2 shows the results on ISCAS85 benchmarks.
We used the variable orderings which we find in the
original files.

From the comparison between the OBDD and
iLOBDD, we can observe that memory requirement is
also reduced on large scale Boolean functions. The
numbers of the nodes are much smaller on all the cir-
cuits except for C1908 and memory requirement is re-
duced to 48% on the average.

Table 3 shows the comparison between OBDDs
and iLOBDDs (of the split system) for some classes of
Boolean functions. The orders in the bottom lines are
the results of regression analysis.

Table 3(a) shows the results for n-input majority
functions. The size of the OBDDs increases in O(n'9'),
while that of the iLOBDDs increases in O(n!%). In
general, similar effect will be observed for symmetric
functions with regularity.

Table 3(b) and (c) are the results for the se-
lector functions that output one of n data in-
puts do,---,d,—1 selected by logn control inputs
o'+ »Clogn—1- (b) and (c) are the results of different
two variable orderings; cg, ,Clogn-—1,do, -+, dy—1 In
(b) and dp, -, dp—-1:€0,** " Clog n—1 10 (€). It is known
that the size of the OBDD is O(n) with ordering (b)
but O(2") with ordering (c). The :LOBDD is not
as good as the OBDD with the ordering (b), but the
iLOBDD shows stunning performance with ordering
(c). It achieves exponential reduction and thus the size
of the iLOBDD of the selection functions are bounded
by polynomial in either orderings.

Table 3(d) and (e) are the results for the bi-
nary adder functions that take 2n + 1 inputs (two
n-bit data ag,-*,an-1,bp," +,b,—; and 1-bit carry
¢o) and output n + 1 results of adder (n-bit data
89, +-,8n—1 and l-bit carry ¢,). The variable order
in (d) is an interleaving order of two inputs from msb
to lsb (by—1,@n_1,**,bo,aa,co), and the order in (e)
is a cascaded order of two inputs from Isb to msb
(€0, @0y y@n-1,b0,+*+,buy—1). In the case of the OB-

361

Table 3 Results for some classes of functions.
(a) Majority functions.

n OBDD iLOBDD

4 6 3
16 72 28
64 1056 175
256 16512 830
O(nl‘m) 0(111.35)

(c) Selector functions
). (with variable order)
0.

(b) Selector functions
(with variable order
o,

* s Clog n~15@0y " " Gn—1 *rdn—1,€0,"° "1 Clogn—1
n | OBDD iLOBDD n | OBDD iLOBDD
4 4 7 4 15 1
16 16 66 8 255 1
64 64 317 16 65535 1
o) O(n'38) oY) o(1)

{d) Adder functions
(interleaving order

(e) Adder functions

cascaded orde

from msb to Isb from Isb to ms

bp-t an=1,""" bo, ag, co €0,a0. "y An—1, bD) ttty bp—1
= | OBDD _iLOBDD n | OBDD ilLOBDD
3 3] 3 4 64 22
8 41 3 6 238 36
{6 81 8 8 916 50
3 6] g 10 3610 64
- o) o0 12 14368 78
(n) (1 0(20.9'311) 0O(n)

DDs. it is known that the size is O(n) with order (d),
and exponential with order (e). In the case of the
iLOBDDs, the sizes are constant with the order (d) and
O(n) even with the order (e). In both cases, significant
reduction in memory size is achieved.

As we have seen, iLOBDD brings about great im-
provement in memory requirement for some classes of
functions. There are functions whose i{LOBDD size
stays polynomial (of number of inputs n) while their
OBDD size becomes exponential. On the other hand,
we can show with an easy proof that {LOBDD size of
functions is always polynomial if the OBDD size of the
functions is polynomial.

5.2 Computation Time

We implemented an :LOBDD package and measured
the time to construct iLOBDDs of n-bit adder func-
tions. The result is shown in Table 4. The iLOBDDs are
constructed by applying AND, OR, NOT, and EXOR
operations to the iLOBDDs representing one variable
Boolean functions. The variable order was an interleav-
ing order from msb to Isb. This experiment was done
on a workstation HP712/80 (with 128MB memory).
Implicit manipulation of :LOBDDs took large
computation time. This may be caused by the com-

plexity of the operation for :LOBDDs. There is a lot

of room for improvement in coding of the package. We
could at least obtain the same order of speed perfor-
mance as the conventional OBDD package by running

362
Table 4 Execution time on n-bit adder.
n | CPU (sec)
4 54.43
8 216.98
[2 659.48
16 1851.35

explicit manipulation algorithm on the implicit data
structure.

6. Conclusion

We proposed a new efficient data structure of’ Boolean
functions based on an implicit representation of BDDs
and showed algorithms to carry out various operations
on this data structure.

Comparison of the memory requirement between
the conventional BDDs and the new implicit BDDs
showed that our new data structure brought about sig-
nificant reduction in memory requirement. We can ex-
pect that our implicit representation can handle large
scale Boolean functions which exceeds the capacity of
the conventional BDDs.

One big challenge is to develop faster manipula-
tion package for iLOBDDs. Another important issue
is to find better coding methods for iLOBDDs. It is
also an interesting research theme to formulate implicit
representation of OBDDs as well as LOBDDs.

Acknowledgment

The authors would like to thank Professor 1. Shirakawa
of Osaka University lor his support and suggestions. We
would also like to thank Professor E. Clarke of CMU
and Dr. K. Hamaguchi of Kyoto University for offering
their BDD package and helpful comments.

References

[1] S.B. Akers, “Binary decision diagrams,” IEEE Trans. Com-
put.. vol.C-27. no.6, pp.509-516, June 1978.

[2] R.E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Trans. Comput., vol.C-35, no.8,
pp.677-691, Aug. 1986.

[3] J.R. Burch, E]M. Clarke, and K.L. McMillan, “Sequential
circuit verification using symbolic model checking,” Proc.
ACM/IEEE 27th DAC, pp.46-51, June 1990.

[4] H. Choi, T. Kohara, N. Ishiura, 1. Shirakawa, and A.
Motohara, “Test generation for sequential circuits based
on Boolean function manipulation™ (in Japanese), [EICE
Trans. Fundamentals, volJ76-A. no.6, pp.8353-843, June
1993.

[5] K. Hamaguchi and E. Clarke, private communication, Oct,
1994,

[6] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of
binary decision diagrams based on exchanges of variables.”
Proc. IEEE ICCAD-91. pp.472—475, Nov. 1991,

[71 B. Lin and A.R. Newton, “Implicit manipulation of equiv-
alence classes using binary decision diagrams.” Proc. IEEE
ICCD, 1991.

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 3 MARCH 1996

[8] S. Minato, N. Ishiura, and S. Yajima, “Shared binary de-
cision diagram with atiributed edges for efficient Boolean
function manipulation,” Proc. ACM/IEEE 27th DAC,
pp.52-57, June 1990.

[9] H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A.
Sangiovanni-Vincentelli, *Implicit state enumeration of fi-
nite state machines using BDD's,” Proc. IEEE 1CCAD-90,
pp.130-133, Nov. 1990.

Hitoshi Yamauchi was born in
Okayama, Japan, on January 31, 1971. He
received the B.E. and M.E. degree from
University of Osaka Prefecture in 1993
and 1995, respectively. In 1993, he joined
the Faculty of Computer Science and Sys-
tem Engineering of Okayama Prefectural
University. His research interests include
b : computer-aided design of VLSI and com-
o puter algorithms. He is a member of the
Institute of Systems, Control and Infor-

mation Engineers.

Nagisa Ishiura was born in Kyoto,
Japan, in 1961. He received the B.E., M.E.
and Ph.D. degrees in information science
from Kyotoe University, Kyoto, Japan, in
1984, 1986, and 1991, respectively. In
1987, he joined the Department of Infor-
mation Science, Kyoto University, where
he was an instructor until April 1991
He joined the Department of Informa-
tion Systems Engineering., Osaka Univer-
sity, Osaka, Japan, as a Lecturer where he
was promoted to Associate Professor in December 1994, His
current interests include design verification and test generation
of digital circuits, logic synthesis, and hardware description lan-
guages. He is a member of IEEE and Information Processing
Society of Japan.

Hiromitsu Takahashi received the
B.E., M.E. and Ph.D. degrees [rom Osaka
University in 1965, 1968 and 1971, respec-
tively. He is a Professor at the Faculty
of Computer Science and System Engi-
neering of Okayama Prefectural Univer-
sity. From 1971 to 1994, he was with the
Department of Mathematical Sciences of
University of Osaka Prefecture. His re-
search interests include graph theory and
computer algorithms. He is a member of
IEEE, the Mathematical Society of Japan and Information Pro-
cessing Society of Japan.

