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Abstract—This paper proposes a circuit design method based
on chained connection of generalized parallel counters (GPCs)
as an efficient FPGA implementation technique for multi-input
adders, which are key components in multipliers, multiply-
accumulate units, and neural networks. Conventional methods
construct carry-save adders using GPCs, which are extended
full adders, but the most bit-efficient GPC, the GPC(6,0,7;5),
has not been effectively utilized. The proposed technique reduces
circuit area by fully leveraging this GPC through chained GPC
connections. Experimental implementations on a Xilinx Artix-7
FPGA demonstrated an average area reduction of 13.06% for 8-
to 32-bit multipliers and 11.08 % for multi-input adders compared
to the best-known methods, while maintaining a critical path
delay comparable to conventional designs.

Index Terms—multi-input adders, chained connection of gen-
eralized parallel counters, FPGA, compressor trees

I. INTRODUCTION

Multi-input addition, which computes the sum of multi-
ple binary numbers, serves as a core component of various
arithmetic circuits such as multipliers and multiply-accumulate
units. In recent years, its importance has also been increasing
in the context of hardware acceleration for neural networks.

Classical implementation methods for multi-input adders
involves constructing a tree of carry-save adders using 3-input,
2-output full adders as the fundamental building blocks [1],
[2]. However, in implementations using LUT-based FPGAs,
the basic building blocks of carry-save adders are often
extended to 6-input, 3-output full adders [3], or generalized
parallel counters (GPCs), which allow not only weight-1
but also power-of-two weighted inputs [4]-[7]. Various GPC
designs on Xilinx 7-series FPGAs [8] have been proposed [9]-
[11], which make full use of built-in carry logic as well as
LUTs.

A carry-save adder tree composed of GPCs is referred to as
a compressor tree. Since compressor trees have a far more
complex structure than trees full adders, various heuristic
algorithms and formulations as integer linear programming
have been proposed to minimize the level and size of the
circuits [3], [5]-[7], [9], [10].

In compressor trees, GPCs reduce the number of bits; thus,
using GPCs with high bit-reduction efficiency helps minimize
overall circuit size. Among the GPCs implementable within
a single slice, the most efficient is the GPC (6,0,7;5), which
compresses 13 input bits into 5. However, this GPC fits within
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a single slice only when its least significant input is driven by
the carry output of another GPC; otherwise, it requires two
slices.

Kanai et al. [12] focused on this issue and proposed a
method for constructing multi-input adders by chaining the
carry logic of the GPC (6,0,7;5) to build a 6-2 adder that
reduces six binary numbers to two, and connecting these
adders in a tree structure. This method yields multi-input
adders with smaller area and delay than those generated by
the optimal compressor tree construction techniques proposed
in [7], [9]. However, this approach is only applicable to simple
input patterns, such as summing multiple binary numbers.

This paper proposes a new method that generalizes the
concept of chaining the GPC (6,0,7;5), as introduced in [12], to
enable the construction of optimal circuits for arbitrary input
patterns in compressor trees. The proposed approach allows
chaining of various GPCs and determines the optimal config-
uration using integer linear programming, as in conventional
compressor tree designs.

In experiments constructing compressor trees for multiplier
and multi-input adder circuits using the proposed method, we
achieved circuits with an average area approximately 10%
smaller than those produced by the optimal compressor tree
construction methods presented in [7], [9], while maintaining
a comparable critical path delay in all cases.

II. MULTI-INPUT ADDERS BASED ON GENERALIZED
PARALLEL COUNTERS

A. Generalized Parallel Counters and Compressor Trees

The input/output specification of a GPC (generalized par-
allel counter) is represented as (px—1,Pk—2,---,Po;¢q). This
GPC takes p; input bits with weights of 2¢ and outputs their
weighted sum using ¢ bits. For example, a GPC (1,3,2,5;5)
has 1, 3, 2, and 5 input bits with weights of 8, 4, 2, and 1,
respectively, and outputs their weighted sum using 5 bits.

To date, efficient designs of GPCs using a single slice have
been proposed for Xilinx 7 series FPGAs, where a slice (or
a logic block) is composed of four LUTs and carry logic as
illustrated in Fig. 1. Eight fundamental types of GPCs that can
be implemented in a single slice are known, and approximately
70 variations shown in TABLE I, obtained by omitting or
merging certain inputs and outputs, are used as basic building
blocks for multi-input adders.
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Fig. 1: Model of FPGA slice (logic block)

TABLE I: Single-slice GPCs on Xilinx 7 series [5], [9]-[11]
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A carry-save adder tree composed of GPCs is referred to as
a compressor tree. Fig. 2 shows an example of a multi-input
adder that sums n binary numbers, each with m bits. Each
dot represents a single bit. A stage—defined as a set of GPCs
separated by dashed lines—receives bits from the previous
stage and outputs fewer bits to the next. The total number of
bits decreases at each stage. Once the inputs are reduced to
two values by the compressor tree, a row adder with a carry
chain is typically used to compute the final sum [7], [9], [10].

The critical path delay of the circuit (indicated by the orange
arrow) is on the order of O(m + log n)—with O(logn) from
the compressor tree and O(m + log, n) from the row adder.
Although using a carry-lookahead adder for the row addition
can reduce the delay to O(log m+logn), employing the built-
in carry chain within a slice is generally faster for m values
up to around 256.

B. Optimization of Compressor Tree Structure

To construct compressor trees with fewer stages and smaller
circuit sizes, heuristic algorithms and formulations as integer
linear programming (ILP) problems have been proposed so far
(71, [9], [10].

In [7], [10], for a fixed number of stages S, the construction
of a GPC-based compressor tree with minimal circuit size
is formulated as an optimization problem. By incrementally
solving this problem while increasing S (S = 0,1,2,---), a
compressor tree structure with both the minimal number of
stages and minimal circuit size can be obtained.

The formulation of this method is shown in TABLE II. The
objective function to be minimized is the total cost of the GPCs
used. Constraint C1 ensures that, in the first stage (s = 0) of
the compressor tree, the number of bits in each column c is
equal to the number of input bits /.. in that column. Constraint
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Fig. 2: Multi-input adder based on compressor tree

TABLE II: Formulation of the conventional method [7]

ks,c,e € No  Number of GPCs e used at stage s, column ¢
Ns.c € Ng Number of bits at stage s, column ¢

S eNg Number of stages in the compressor tree
CeNg Number of columns in the compressor tree

E Set of available GPCs

ce €R Cost of GPC e

Me.c € Ng Number of input bits to GPC e at column ¢

ge € No Output bit width of GPC e

Kec € Ng Number of output bits from GPC e at column ¢
I. € Ng Number of input bits at column ¢

L €Ny Max number of output rows of the adder

S—1C-1

minimize E E E ks,c,e - Ce

s=0 c=0 ecFE

Cl  Noc=1I. forVee{0,1,...,C —1}
2  Ng_ 1c§L for Ve € {0,1,...,C — 1}
3 szsp e’ e(”>NSC
e€E ¢/=0
for VsE{O,l,.”7 — 1}, Ve e {0,1,...,C — 1}
Cc4 szbc e’ ec’*Ns+1,c
ecE /=0
for Vs € {0,1,...,8 — 2}, Ve € {0,1,...,C — 1}

C2 guarantees that the number of bits in each column c in
the final stage (s = S — 1) does not exceed the maximum
number of output rows L. Constraint C3 requires that all bits
in each stage be input to GPCs and propagated to the next
stage. Constraint C4 states that the number of output bits from
the GPCs in each stage must equal the number of bits in the
subsequent stage, ensuring that all output bits from the GPCs
are transferred to the next stage.

C. Exploiting GPCs with Large Compression Ratios

In compressor trees, GPCs serve to reduce the number of
bits. For example, a full adder—represented as GPC (3;2)—
takes three inputs and produces two outputs, effectively re-
ducing one bit. This corresponds to a compression ratio of
2/3. Using GPCs with higher compression ratios reduces the
total number of GPCs required and, consequently, the overall
circuit size.



Among the GPCs implementable in a single slice (see
TABLE ), the 13-input, 5-output GPC (6,0,7;5) has the highest
compression ratio, followed by the 12-input, 5-output GPC.
Although the (6,0,7;5) GPC is desirable due to its efficiency,
it fits in a single slice only when its cin port connects to the
co3 port of an adjacent slice; otherwise, it requires two slices.

Kanai et al. [12] proposed a method to build multi-input
adders with smaller circuit size than the optimal solution in
[7], by connecting GPC (6,0,7;5) units via carry chains. By
chaining these GPCs, they construct a 6-2 adder, which sums
six binary numbers into two, and use it to build an adder tree.

Since a 6-2 adder tree is simpler than a GPC tree, it can be
constructed without solving complex optimization problems.
However, optimal circuits can be obtained only for simple
input patterns such as multi-operand addition, and it is not
applicable to partial product summation in multiplication.

III. MULTI-INPUT ADDER BASED ON GPC CHAINING
A. GPC Chaining

In this paper, we generalize the concept of the 6-2 adder and
apply a chained connection of GPCs to a compressor tree. This
enables efficient use of the GPC (6,0,7;5), reducing circuit
size. It also allows optimal circuit design for general input
patterns, including those in multipliers.

In our method, a chain of GPCs connected via carry chains,
as shown in Fig. 3 (a), is referred to as a GPC chain. Fig. 3
(b) illustrates a multi-input adder using the GPC chains. Each
stage of the conventional compressor tree is connected via
carry chains. These chains do not need to span from the least
to the most significant bits and may be segmented. While
conventional methods use a row adder to sum the two outputs
compressed by the tree, as in Fig. 2, our approach treats the
row adder as part of the GPC chain, allowing the entire circuit,
including the row adder, to be optimized as a whole.

The critical path of the adder is shown by the orange arrows
in Fig. 3 (b). Signals may propagate within each stage of the
GPC chain, but all paths from the top-right to the bottom-left
have equal length. Thus, the delay remains O(m + logn), the
same as in conventional compressor trees.

B. Circuit Optimization via Integer Linear Programming

As in previous methods [7], [10], our approach also uses
integer linear programming to determine the optimal compres-
sor tree structure. It builds on the existing formulation, with
additions and modifications to support chained connections.

(1) Formulation for GPC chaining

When two GPCs are connected in a chain, the highest bit of
the lower GPC and the lowest bit of the upper GPC (indicated
as 1 in Fig. 3 (a)) are removed. The corresponding formulation
is shown in TABLE III.

The variable w, . represents the number of bits directly
propagated to the next stage. In previous methods, this was
modeled using GPC (1;1), but it cannot form chains, so our
approach introduces a dedicated variable instead. Let ¢,
denote the number of GPCs connected at stage s and column
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(b) Structure of multi-input adder

Fig. 3: Multi-input adder based on GPC Chaining

TABLE III: Formulation for GPC Chaining

ws,e € No  Number of input bits directly propagated to the next
stage at stage s, column ¢
ts,c € Ng Number of chain connections from below to the GPC
at stage s, column ¢
ge—1
c3/ Ws,c — ts,c + Z Z k‘s’cfc/,e . Me,cl > N.s,c
ecE ¢'=0
for Vs € {0,1,...,8 —1},Vee {0,1,...,C — 1}
ge—1
c4’ Ws,c — ts,c + Z Z ks,cfcﬂe . Ke,c’ = Ns+l,c
e€eFE /=0
for Vs € {0,1,...,5 -2}, Vee {0,1,...,C — 1}
D ks > tse
C5 ecE
for Vs € {0,1,...,5—1},Vee {0,1,...,C — 1}
Z ks,chc,e Z ts,c
C6 ecE
for Vs € {0,1,...,8—1},Vee {0,1,...,C — 1}

c; the number of bits removed from the inputs and outputs due
to chaining is equal to ¢, .

Constraints C3 and C4 are replaced with C3’ and C4’,
and new constraints C5 and C6 are introduced. C3’ and C4’
are extensions of the original C3 and C4, incorporating the
number of directly propagated bits w, . and the number of
bits removed by chaining ¢ .. Constraints C5 and C6 limit
the number of chained GPCs ¢, . at stage s and column c.
Since chaining is only possible when GPCs exist both above
and below, the number of chains must not exceed the number
of GPCs in the upper stage (C5) or the lower stage (C6).



TABLE IV: Formulation for GPC with 7 inputs at LSB

rs,c € No  Number of bits reduced from the GPC at stage s, column ¢
E- Set of GPCs not implementable in a single slice
ge—1
c3! Ws,c = Ts,c + Z Z ks,cfc’,e . Me,c’ > Ns,c
eeFE /=0
for Vs € {0,1,...,5 -1}, Ve e {0,1,...,C — 1}
c7 ts,c < Ts,c
for Vs € {0,1,...,8—1},Vee {0,1,...,C — 1}
Z ks,c,e < Ts,c
C8 ecEr

for Vs €{0,1,...,8—1},Yee {0,1,...,C — 1}

(2) Formulation for a GPC with 7 inputs at LSB

In the formulation so far, a GPC chain with a 7-input GPC
at the least significant position consumes two slices. To avoid
this, when a 7-input GPC is placed at the bottom of a GPC
chain, it is treated as having 6 inputs by reducing one input.
The corresponding formulation is shown in TABLE IV.

In our method, both GPC chaining and the adjustment for 7-
input GPCs reduce the number of input bits. We define the total
number of reduced bits as 7, .. Constraint C3” is a modified
version of C3’, replacing ¢ . with 7, .. Constraints C7 and C8
define the behavior of 7, ..

Our method uses constraints C1, C2, C3”, C4/, C5, C6, C7,
and C8.

IV. EXPERIMENTAL RESULTS

We implemented multi-input adders based on the proposed
method and conducted experiments comparing them with the
optimal compressor tree-based approach in [7]. For n = 8 to
32, we constructed two types of circuits: an n-bit multiplier
and an adder that sums n binary integers of n bits. The GPC
set used is shown in TABLE I. Integer linear programming
was solved using CPLEX 22.1.0.0 with a time limit of 7200
seconds on a Ryzen 9 3900X. The resulting multi-input adders
were implemented in Verilog HDL, and logic synthesis and
place-and-route were performed using Vivado 2023.2 targeting
the Xilinx Artix-7 (xc7al00tcsg324-3).

Fig. 4 (a) and (b) show the circuit area for an n-bit multiplier
and an adder summing n binary integers of n bits, respectively.
The horizontal axis represents the total number of input bits (=
n?), and the vertical axis shows the number of slices. Using the
proposed method, the circuit size was reduced by an average
of 13.06% for multipliers and 11.08% for multi-input adders.
While the previous method used a 12-input, 5-output GPC as
the most efficient option for single-slice implementation, our
method enables the use of a 13-input, 5-output GPC within a
single slice. This improvement is considered a key factor in
the area reduction.

Fig. 4 (c) and (d) show the delay of the n-bit multiplier and
the adder summing n binary integers of n bits. The horizontal
axis represents the total number of input bits (= n?), and the
vertical axis shows the delay time (ns). The delay of the adder
based on the proposed method is nearly identical to that of the
conventional method.
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Fig. 4: Experimental results

V. CONCLUSION

This paper has proposed an efficient FPGA implementation
of a multi-input adder using chained GPCs. The proposed
method reduces the circuit size of both multipliers and adders
while maintaining a delay comparable to conventional com-
pressor trees. This design is expected to be applicable to
FPGA-based neural network implementations [13]. Extending
the approach to FPGAs beyond the Xilinx Artix-7 series
remains a subject for future work.
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