
Extended Distributed Control for Dynamic Scheduling across Dataflow Graphs

Wakako NAKANO Nagisa ISHIURA

School of Science and Technology, Kwansei Gakuin University
2-1 Gakuen, Sanda, Hyogo, 669–1337, Japan

Abstract—This paper extends distributed control for run-time

scheduling of variable latency operations so that it can execute

operations in more than two DFGs in parallel. In contrast to the

conventional high-level synthesis methods which determine the
scheduling of operations statically and control a datapath with

a single finite state machine, the distributed control enables dy-

namic adjustment of execution timing of variable latency oper-

ations by reining functional units with multiple finite state ma-

chines. Although Shimizu extended the Del Barrio’s distributed

controller to handle control dataflow graphs (CDFGs) consisting

of multiple dataflow graphs (DFGs), in which dynamic operation

motion across DFGs were possible, its formulation allowed paral-

lel execution of operations in at most two DFGs. This paper pro-

poses a new formulation where operations in more than two DFGs

may be executed in parallel. A preliminary experiment shows that

our new method reduces execution cycles when data dependency

does not prohibit parallel execution of multiple DFGs.

I. Introduction

While the scale and the complexity of the hardware imple-
mented in a chip are growing rapidly, there is a strong demand
to reduce time to market. High-level synthesis is considered to

be one of the effective means to expedites hardware design.

In traditional high-level synthesis methods, operations are
scheduled statically assuming that functional units take the
same number of clock cycles for the same operations. How-
ever, in actual datapaths, functional units may exhibit differ-

ent latencies for the same operations. There had been some
attempts to adjust operation scheduling in runtime [1], a fi-
nite state machine (FSM) to control the datapath would end
up with enormous amount of states. On the other hand, a

distributed control scheme, where the datapath is controlled
by multiple FSMs, enables run-time adjustment of operation
scheduling with reasonable hardware cost. Different schemes
for distributed controllers have been proposed by Del Barrio

[2], Pilato [3], etc.

While these methods originally dealt with a case where com-
putation is expressed with a single DFG, Shimizu extended the
Del Barrio’s distributed control to handle multiple DFGs [4].
This enables dynamic operation motion across dataflow graphs

(DFGs) which brought about the same effect as trace/loop
scheduling. However, it posed a restriction that only two DFGs
may be executed in parallel.

To address this issue, we propose an improved formulation
of the distributed control where more than two DFGs can be

executed in parallel. A preliminary experiment demonstrates
that execution cycles can be reduced by this extension.

II. Variable latency units and distributed control

Functional units in datapaths may exhibit different laten-
cies for the same operation, depending on operand values,

states of the units, etc. Memories and iteration-based multipli-

A M

+
∗

+

∗

1

2

3

4

S0

S1

S2

S3

FSM

S4

A M

+

+

∗

1 2

3

4

∗
A M

+
+

∗

1 2

3

4

∗

(a) static scheduling (b) early completion (c) dynamic scheduling

A1

A3

FSM FSMA M

start
end end

start
end

A

A

A

1

3

endA

M2

M4

start
end end

start
end

M

M

M

2

4

endM

enA enM

endA endM

∗

+

+

1 2

3 4

∗
A M

(d) Del Barrio’s distributed control [2]

Fig. 1. Handling of variable latency operations.

ers/dividers are such examples. In traditional high-level syn-
thesis where operations are scheduled statically (Fig. 1 (a)),
operation 3 can not start early even when operation 2 finishes

in a cycle (Fig. 1 (b)).

In the Del Barrio’s method [2], dynamic adjustment of
scheduling (Fig. 1 (c)) is realized by controlling units with sep-

arate FSMs. For example, in Fig. 1 (d), FSMA and FSMM

control units A and M, respectively. Unit u start execution
when FSMu sets enu = 0, and notifies the completion by set-
ting endU = 1. Each operation i is assigned a state S i. At

S i, the FSM waits for starti = 1, which means that all the
operations i depends on are finished. For example, at S 3,
start3 = (S 2∧endM)∨Done2, where Donei expresses the com-
pletion of operation i. After setting enu = 1, FSMu waits for

the completion signal endu, and then moves to the next state.

Shimizu extended the Del Barrio’s method to handle multi-
ple DFGs connected with conditional and unconditional tran-

sitions [4], which enables dynamic operation motion across
DFGs. For example, in the benchmark in Fig. 2 (a), A2 can
execute operations 1 in DFG0 of the next iteration, while op-
erations 12, 11, and d2 in DFG2 are still under execution.

However, the formulation in [4] posed a restriction that only
one DFG ahead of the current DFG may be executed, i.e. at
most two DFGs may be executed at the same time. A self loop
is eliminated by duplicating the DFG (DFG0’ in Fig. 2 (a) is

a copy of DFG0). It also imposed that at least one state must
exist per unit per DFG. States d0, d0’, d1, and d2 are dummy
states inserted to satisfy this condition.

III. Extended distributed control

A. Overview

There are cases where the “2 DFG restriction” in [4] limits

the performance of resulting circuits. For example, in a exe-

R1-7 SASIMI 2018 Proceedings

- 35 -



+
d0

+
1

∗
d0

∗
d0

A1 A2 M1 M2

−
2

<
3

<
4

DFG0 +
d0’

+
1’

∗
d0’

∗
d0’

−
2’

<
3’

<
4’

DFG0’

+
d1

∗
5

∗
6

∗
7

∗
8

−
9

+
10

DFG1

+
12

+
d2

∗
11

∗
d2

DFG2

3&4

3’&4’

3&4 3&4 3’&4’ 3’&4’

+1

A1 A2 M1 M2

+
d1

∗
5

∗
6

∗
7

−
9

+
10

DFG1

+
12

+
d2

∗
11

∗
d2

DFG2

+
d0

+
1

∗
d0

∗
d0

−
2

<
3

<
4

DFG0

8

∗

+
d1

∗
5

∗
6

DFG1

X

X

A1 A2 M1 M2

+
d1

∗
5

∗
6

∗
7

−
9

+
10

DFG1

+
12

+
d2

∗
11

∗
d2

DFG2

+
d0

+
1

∗
d0

∗
d0

−
2

<
3

<
4

DFG0

8

∗

+
d1

∗
5

∗
6

DFG1

(a) CDFG of benchmark bicubic [4] (b) trace (previous) (c) trace (proposed)

DFG 0

DFG 1 DFG 2

DFG 3

DFG 4

main

frontier

(d) main-frontier scheme [4]

active

active
 & head

active

DFG 0

DFG 1 DFG 2

DFG 3

DFG 4

(e) active-head scheme

Fig. 2. Extended distributed control on bicubic benchmark.

cution trace in Fig. 2 (b), A2 could execute operations 1 and 2

just after d2, but A2 must wait for the completion of operation
10 to start operation 1, due to the 2 DFG restriction.

In this paper, the formulation is updated so that operations
in more than 2 DFGs can be executed at the same time. With
this formulation, the trace in Fig. 2 (b) will be improved to (c).

B. Formulation

In the previous formulation, state transition was controlled
by defining a main DFG (currently being executed) and a fron-

tier DFG (one DFG ahead of the main DFG) as illustrated in
Fig. 2 (d). Transition into a state is allowed only if it is in the
main or frontier DFGs.

In this paper, new predicates active and head are introduced.
Intuitively, as illustrated in Fig. 2 (e), active(d) means that
some operation in DFG d is being executed, and head(d) means
that DFG d is the forefront of the active DFGs. Let last(d)

means that all the operations in the DFG d finishes in the cur-
rent cycle. Then, transition from a state in DFG d to a state in
DFG d′ is allowed only if transition from d to d′ is fixed, and

head(d) or active(d′) or last(d′).

This allows execution of DFGs as long as the head DFG does
not overrun the “tail” of the active DFGs.

Predicates active(d) and head(d) are defined operationally.
Initially, active(d) = head(d) = 0 for all DFGs d and active(d0)

= head(d0) = 1 for the start DFG d0. active(d) is set when
there is a transition from a state in some DFG dp to a state in
d. When last(d) =1, active(d) is reset in the next cycle. When
there is a transition from a state in some DFG dp to a state in d

where head(dp)=1, head(d) is set and head(dp) is reset.

IV. Experimental Results

Preliminary experiment has been conducted by manually de-
signing RTL circuits in Verilog HDL for the same benchmarks
as in [4], and synthesizing them by Xilinx Vivado (2016.4)
targeting Artrix-7 (xc7a100tcsg324-3). It is assumed that mul-

tiplication takes 1 or 2 cycles depending on operands, and all
the other operations take 1 cycle. TABLE I summarizes the
results. Rows “DC” and “XDC” are for the previous [4] and
the proposed methods, respectively. “#cycle” are the number

of execution cycles for 128 iteration, where r is the probabil-
ity that the multiplication takes two cycles. We can observe
substantial reduction of execution cycles on bicubic. On the
other hand, there is no change on m-lerp in which there is no

chance of executing more than 3 DFGs, bacause of loop car-

TABLE I Experimental result.

control #cycle #LUT delay
r = 1.0 r = 0.5 r = 0.0 [ns]

bicubic DC [4] 1,138 1,039 933 586 7.86
XDC 1,037 893 731 588 8.00

m-lerp DC [4] 933 860 819 743 7.61
XDC 933 860 819 737 7.60

ried data dependence across DFGs. “#LUT” (LUT count) and
“delay” (critical path delay) are almost the same as the previ-
ous method.

V. Conclusion

This paper has proposed a new formulation of the distributed

control in which operations in more than two DFGs may be ex-
ecuted in parallel. A preliminary experiment shows that our
new method can reduce execution cycles when data depen-
dency does not prohibit parallel execution of multiple DFGs.

We are now working on automatic RTL generation from CDFG
and scheduling/binding based on this formulation.

Acknowledgements—Authors would like to express their appreciation
to Dr. H. Kanbara (ASTEM/RI), Prof. H. Tomiyama (Ritsumeikan
Univ.), and Mr. T. Nakatani (formerly with Ritsumeikan Univ.) for
their valuable comments. We would also like to thank to the members
of Ishiura Lab. of Kwansei Gakuin Univ. for their cooperation. This
work was partly supported by JSPS KAKENHI Grant #16K00088.

References

[1] Y. Toda, N. Ishiura, and K. Sone: “Static scheduling of dy-

namic execution for high-level synthesis,” in Proc. SASIMI

2009, pp. 107–112 (Mar. 2009).

[2] A. A. Del Barrio, et al.: “A distributed controller for man-
aging speculative functional units in high-level synthesis,”
IEEE Trans. CAD, vol. 30, no. 3, pp. 350–363 (Mar. 2011).

[3] C. Pilato, et al.: “A runtime adaptive controller for support-
ing hardware components with variable latency,” in Proc.

NASA/ESA AHS 2011, pp. 153–160 (June 2011).

[4] M. Shimizu and N. Ishiura: “Extending distributed control
for high-level synthesis beyond borders of basic blocks,”
in Proc. SASIMI 2016, pp. 172–177 (Oct. 2016).

[5] M. Shimizu, N. Ishiura, S. Ota, and W. Nakamo: “Spec-
ulative execution in distributed controllers for high-level
synthesis,” in Proc. RSP 2017, pp. 99–105 (Oct. 2017).

- 36 -




