
Randomizing Cache Index Generation for

FPGA Implementation

Kentaro Hayashi Nagisa Ishiura

School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan

Abstract—This paper presents an FPGA (field pro-

grammable gate array) oriented cache index generation

method to enhance cache hit ratio for embedded

systems. Randomizing or hashed cache indexes are

known to improve cache hit ratio, especially on direct

mapping caches. In the context of embedded systems

design, several researches have been conducted to find

an appropriate hash function that reduces cache misses

for a given program. Hash functions using 2-input

exclusive-or gates are easily computed by hardware

and yet achieve considerable cache miss reduction.

However, they result in a waste of hardware resources if

implemented by LUT-based FPGAs. Thus, in this paper,

hash functions using LUTs (look-up tables) instead of

XOR gates are proposed. Given a memory access trace,

the best combination of truth tables and inputs for

LUTs is searched by simulated annealing. Experiments

on 12 SPEC CPU benchmarks shows that this method

enhances the cache hit ratio over the XOR based

method.

I. INTRODUCTION

As the processor-memory gap is widening, cache

memories are becoming more and more important,

even in embedded systems. Since a subtle improve-

ment on cache hit ratio leads to substantial speed-up

of program execution, reduction of cache misses is

one of the critical issues in system design.

In general purpose computing systems, hardware

rather than software is altered to enhance cache hit

ratio. For example, the starting addresses of the basic

blocks in a given program are adjusted to reduce

cache misses [1]. On the other hand, in embedded

systems, where only a single program or a limited set

of programs are executed, adjustment can be made

on the hardware side.

In literature [2], a cache configuration, a combi-

nation of the total size (capacity) and the block size

of the cache, to minimize cache misses are searched

for a given program. Cache size can also be adjusted

to improve WCET (worst case execution time) [3].

Another hardware oriented approach is to alter cache

index functions. In the classical scheme, the lower c

bits of the block numbers (where 2c is the maximum

number of the blocks accommodated in the cache)

are used for the cache index. In general, however,

any c bits computed from block numbers may serve

as the cache index. By choosing a mapping that

uniformly distributes resulting indexes, cache misses

due to conflicts may be reduced [5], [6].

Vandierendonck [7] has proposed a randomiz-

ing index generation based on 2-input exclusive or

(XOR) gates, which reduced cache conflict misses

by 30% to 60%. Although it is easily implemented

by hardware, it is not necessarily efficient if FPGA

implementation is assumed, because a 2-input XOR

function takes a single LUT (look-up table), though

it can implement any logic function (typically of 4

or 5 inputs).

Thus, in this paper, randomizing cache index gen-

eration using LUTs is proposed. Each of the index

bits is computed by an LUT, whose logic function

and input bits are selected to enhance cache hit ratio.

Simulated annealing based on cache simulation is

employed to find optimal solution. Experiments on

12 SPEC CPU benchmarks shows that this method

slightly enhances the cache hit ratio over the XOR

based method.

II. CACHE INDEX GENERATION

We deal with design of cache memories in em-

bedded systems where hardware may be adjusted to

a given program running on the system. We focus on

generation of cache index bits in this paper.

We assume a direct mapping cache memory in this

paper. Let the logical memory address space be 2a

bytes and hence the memory address be specified

with a bits. Let the cache block size be 2b bytes

and the cache can accommodate 2c blocks. Then, as

shown in Fig. 1 (a), the lower b bits of the a address

bits represents offset. The upper a− b bits represents

the block number and c bits from the block number

serve as a cache index.

In a classical scheme, the lower c bits of the block

number are used for the cache index (Fig. 1 (a)).

However, any c bits from the block number may

serve as the cache index (Fig. 1 (b)). By choosing

favorable c bits for a given program, cache conflict

can be reduced [4]. This idea is further generalized

- 330 -

tag

offset
(b bits)

index (c bits)

block#
(a-b bits)

......

memory address (a bits)

(a) Classical cache index.

offsetblock...

index (c bits)
(b) Index selection.

offsetblock
......

hash function
...

index (c bits)
(c) Randomized index.

offsetblock

...
index (c bits)

(d) XOR-based index.

offsetblock

... LUTLUT

index (c bits)
(e) Proposed LUT-based index.

Fig. 1. Cache index generation.

so that c bits are computed by a hash function from

block numbers (Fig. 1 (c)). This randomizes cache

indexes which is expected to reduce cache conflicts.

The hash function must be computed as fast as

possible. Vandierendonck [7] has proposed a random-

izing index generation based on 2-input exclusive or

(XOR) gates. The 2 inputs for each of c XOR gates

are selected to minimize the cache misses for a given

program.

III. LUT-BASED CACHE INDEX GENERATION

A. Overview

Although the 2-input XOR method needs only

c XOR gates, each XOR gate consumes an LUT

if implemented by an FPGA. Since, typical LUTs

implement logic functions of 4 or 5 inputs, we may

use this freedom to further enhance cache hit ratio.

Fig. 1 (e) is the hardware configuration to generate

cache index proposed in this paper. Each of the c bits

is computed by an LUT whose truth table and input

bits are chosen so that cache misses are minimized.

The optimal combination of the truth tables and input

bits are searched by simulated annealing.

B. Logic Functions for LUTs

We assume in this paper a memory-based LUT

with m inputs, which can compute any m-input logic

function by configuring its truth table consisting of

2m bits. Basically, we choose one of the 22
m

logic

functions for each LUT. However, this might lead to

huge search space, so we also consider two limited

classes of logic functions as well.

One is the class of logic functions whose onset size

is 2m−1, where the onset of m-input logic function

f is defined as {x ∈ {0, 1}m | f(x) = 1}. We

hereafter refer to a function of this class as a “1/2-

function.” Since the output value of a 1/2-function

becomes 1 with a probability of 1/2, each of the c

index bits would equally partition the block number

space. Moreover, since the m-input XOR function

is a 1/2-function, this is a natural extension of the

2-XOR method.

The other class of logic functions we consider in

this paper is the m-input symmetric functions, which

are defined as logic functions whose output values

for any input vector are the same as their values

for any permutation of that input vector. This is also

an extension of the 2-XOR method, for the m-input

XOR function is a symmetric function.

C. Inputs to Each LUT

The m inputs to each LUT are chosen from bits

representing block numbers. Let the j-th input of

LUT (j = 0, 1, · · · ,m−1) is taken from the ij-th bit

of the block number (ij = 0, 1, · · · , a− b− 1). Then

we impose i0 < i1 < · · · < im−1. For example, in

the case of m = 4, we allow (2, 5, 9, 13) but not

(3, 3, 5, 7) nor (4, 8, 5, 10). This is because different

input permutations are already incorporated in the

logic functions.

IV. SEARCHING FOR OPTIMAL CONFIGURATION

BY SIMULATED ANNEALING

Given a trace, a sequence of the memory addresses

accessed by a program, we try to find a combination

of logic functions and inputs for the c LUTs that

minimizes cache misses. In this paper, we employ

simulated annealing for the search.

The truth table of the function of an m-input LUT

is represented by a bit vector of size 2m. The m

inputs to the each LUT is also represented by a bit

vector of length a− b whose m bits are ones and the

other bits are zeros. Namely, a state in our simulated

annealing is represented by a bit vector of size m ·
(2m + (a− b)).

The objective function, to be minimized, for a state

is the cache miss counts for a given trace. This is

computed by simulating the behavior of the cache

- 331 -

TABLE I

EXPERIMENTAL RESULT.

benchmark trace cache hit rate

name size classical XOR [7] LUT-G LUT-H LUT-S

astar 6,763 26.90% 72.29% 72.91% 72.56% 72.36%

bwaves 10,005 40.15% 75.99% 75.88% 75.92% 75.83%

gamess 9,715 40.48% 76.09% 76.44% 76.14% 76.28%

hmmer 5,278 28.63% 69.06% 69.19% 69.46% 69.34%

lbm 7,865 22.11% 75.49% 76.55% 76.62% 76.64%

libquantum 3,607 24.20% 70.58% 71.06% 71.58% 71.19%

namd 8,377 30.15% 73.56% 73.61% 73.62% 74.05%

povray 5,695 57.54% 81.93% 81.90% 81.84% 82.00%

specrand 3,086 22.62% 72.36% 72.65% 72.91% 72.55%

wrf 12,540 49.08% 79.15% 79.23% 79.29% 79.34%

zeusmp 10,431 39.66% 75.46% 75.82% 75.63% 75.67%

GemsFDTD 9,701 40.53% 76.06% 76.07% 76.13% 76.27%

average 6,015 33.60% 74.75% 75.03% 75.07% 75.05%

average CPU [s] — 23.51 46.42 46.00 46.31

Intel Core i5-4310U 2.00GHz with 3.8GB RAM

for the given trace. It takes time proportional to the

size of the trace.

The initial state is determined randomly. A neigh-

bour state of a state is obtained by changing either

the truth table or the inputs of one of the LUTs. A

truth table may be replaced by any other truth table.

If 1/2-functions or symmetric functions are assumed,

the replacement is done within the same class of

functions. On the other hand, as for the inputs, a

change is allowed only on one of the m inputs. In

other words, the hamming distance of the two vectors

to represent the inputs differ by 2.

V. EXPERIMENTAL RESULT

A search program was implemented in C language

which ran on Linux, Mac OSX, etc. Experiments

were conducted on 12 benchmarks from SPEC CPU.

The programs were compiled into x86 binaries and

the traces of the instruction addresses were captured.

Assumed cache block size was 24 bytes and cache

size was 23 blocks. The initial temperature, the cool-

ing rate, the final temperature were 1.0, 0.9, and 0.01,

respectively, and the iteration at each temperature

was set to 1,000.

TABLE I shows the result of an experiment, which

lists the cache hit ratio for 12 benchmarks from SPEC

CPU, average hit ratio and average CPU time spent

for the search. Row “trace size” shows the number of

memory accesses. Rows “classical” and “XOR” are

of the conventional methods, while rows “LUT-G”,

“LUT-H”, and “LUT-S” are of the proposed meth-

ods with general logic functions, 1/2 functions, and

symmetric functions. Compared with the classical

method, randomized index drastically enhances the

cache hit ratio. Proposed methods further improves

the hit ratio over the XOR-based method [7], if not

significantly. The CPU time necessary for the search

was as much as twice of the XOR, which we consider

acceptable.

VI. CONCLUSION

We have presented an FPGA oriented randomizing

cache index generation method to enhance hit ratio. It

was confirmed that there was some room to improve

hit ratio by replacing 2-input XOR gates by LUTs.

It is a future work to revise details of the search

procedure and to conduct experiments on a lot more

instances and different settings.

ACKNOWLEDGMENT

Authors would like to express our thanks to all the

members of Ishiura Laboratories of Kwansei Gakuin

University for their advice and discussion for this

work.

REFERENCES

[1] H. Tomiyama and H. Yasuura: “Code Placement Techniques

for Cache Miss Rate Reduction,” ACM TODAES, vol. 2, no. 4,

pp. 410–429 (Oct. 1997).

[2] Y. Afek, D. Dice, A. Morrison: “Cache Index-Aware Memory

Allocation,” in Proc. International Symposium on Memory

Management (ISMM 2011), pp. 55–64 (June 2011).

[3] H. Falk and H. Kotthaus: “WCET-Driven Cache-Aware Code

Positioning,” in Proc. CASES 2011, pp. 145–154 (Oct. 2011).

[4] A. Ros, P. Xekalakis, M. Cintra, M. E. Acacio, J. M. Garca:

“ASCIB: Adaptive Selection of Cache Indexing Bits for

Removing Conflict Misses, ” in Proc. ISLPED 2012 pp. 51–

56 (July 2012).

[5] A. J. Smith: “Cache Memories,” ACM Computing Surveys,

vol. 14, issue 3, pp. 473-530 (Sept. 1982).

[6] N. Topham and A. González: “Randomized Cache Placement

for Eliminating Conflicts,” IEEE Trans. Computers, vol. 48,

no. 2, pp. 185–192 (Feb. 1999).

[7] H. Vandierendonck: “Application-Specific Reconfigurable

XOR-Indexing to Eliminate Cache Conflict Misses,” in Proc.

DATE 2006, pp. 357–362 (Mar. 2006).

- 332 -

