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Abstract—This paper presents a new method of generating
test programs for random testing of C compilers based on
equivalence transformation on C programs. Although equivalence
transformation on programs is a promising way of generating
new test programs without undefined behavior, existing methods
needed valid test programs used as seeds, and they applied only
addition/deletion of statements to/from unreachable portion of the
seed test programs. On the other hand, our method generates a
vast variety of test programs starting from a trivial initial pro-
gram by repeatedly applying equivalence transformation, which
works on live codes. Furthermore, our method can control the
resulting operand values of the subexpressions in test programs,
which contributes to a higher bug detection ability. A random
test systems, Oranged4, based on our method has detected bugs
in the latest development versions of GCC-6.0.0 and LLVM-3.9.

I. INTRODUCTION

Compilers are infrastructure tools for developing software
in all the fields, including enterprise systems, embedded
systems, mission critical systems, etc. Although lexical and
syntax analysis modules in mature compilers such as GCC
and LLVM have rarely malfunctions, optimization modules,
which perform aggressive and sophisticated transformation
on intermediate representation, are vulnerable to new bugs,
and actually many bugs are still being reported to their bug
databases [1], [2]. Thus testing of compilers to secure their
reliability is a critical issue.

Although compilers are intensively tested using test suites,
huge sets of test programs such as [3], [4], [5], [6], it is
theoretically impossible to validate compilers completely with
a finite set of programs. Randomly generated test programs are
used as complements of the test suites in an attempt to detect
potential deep bugs.

Csmith [7] is one of the most successful random test system
for C compilers, which reported 79 bugs in GCCs and 202
bugs in LLVMs. It covers broad range of syntax of the C
language, including arrays, structs/unions, conditional and loop
statements, function calls, etc. However, in order to avoid
generating test programs with undefined behavior (such as zero
division), it places some conservative restrictions on the syntax
of test programs.

On the other hand, a precomputation-based method, as
employed in Orange3 [9], generates more aggressive test
programs by avoiding undefined behavior based on the precise
precomputation of the code behavior during program construc-
tion. Orange3 has reported 8 bugs and 5 bugs in the latest
versions of GCCs and LLLVMs, respectively, which can not be
detected by Csmith. However, it is difficult to handle complex
syntax by this method. Orange3 can only generate programs
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with sequence of assign statements, and its extension is limited
to for loops [10].

Proteus [13] and Athena [14] are recent successful random
test systems based on equivalence transformation of test pro-
grams. They generate a set of test programs from an existing
test program. However, they need the seed test programs which
must be valid and complex enough. Moreover, transformation
is limited to deletion or addition of code fragments which are
not on the execution paths of the programs.

It is also an issue that randomly generated expressions
tend to evaluate to specific values. This means that code
optimization for arithmetic expressions is tested on limited
operand values.

To address these issues, this paper proposes a new test
generation method for C compiler random testing. It can
generate valid and complex test programs by repeatedly apply-
ing equivalence transformation on test programs starting with
a trivial but valid seed program. The transformation in our
method is more sophisticated than those of Proteus [13] and
Athena [14] in the sense that it works on live codes as well as
dead codes. While it can generate aggressive test programs as
the precomputation based method, it can handle more complex
syntax. Besides, it can control the distribution of the values
of operands of every subexpression in the programs, which
contributes to a higher bug detection ability.

A random test systems, Orange4, based on the proposed
method has detected bugs in the latest development versions
of GCC-6.0.0 and LLVM-3.9. It has also detected a bug in
GCC-4.5.0 by a test program which cannot be generated by
Orange3.

II. RANDOM TESTING OF COMPILERS
A. Approaches

Random testing of compilers refers to testing compilers by
automatically generated random programs. Each program is
compiled by the compiler under test, executed, and checked if
the result is correct. The major two challenges in compiler
random testing are how to tell the correct behavior of the
randomly generated programs and how to avoid generating
programs with undefined behavior (zero division, signed over-
flow, out of bounds array access, etc). There are three major
approaches to address these issues.

The first one is based on differential testing [8], where
test programs are compiled by different compilers and the
execution results are compared. Undefined behavior is avoided
by imposing restrictions on the syntax for generating test
programs. For example, every divide operation is guarded
as (b!=0)?(a/b):(a), or every array access as X =
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01: #include <stdio.h>
02: #define OK() printf ("@OKE\n")
03: #define NG(fmt,val) printf("@NGE (test = " fmt ")\n",val)
05: static const volatile float x0 = -9.0F;
15: signed int t3 = -93467547;
17: int main (void)
{
19: static const double x3 = -7461802.0;
29: signed long t4 = 285128L;
31: £0 = (x10+((x16<(
%6* (x17<< ((((signed int)x12)+k22)>>x21)))&&x19);
£0/ (x12<=(x12>=x17))) & ((signed int)x12));

((

(( i

(((((signed int)x3)+k25)>>(x15+x13))>(x2& ((signed int)x0)));
(210 (x2- ((x19==x12)>>x27)));

x9/x13)) +x4) ) ;

w
=

- o
w

—

t0 == 2284795846113651LL) { OK(); } else { NG("$1ld", t0); }

41: if (t4 == -11) { OK(); } else { NG("$1d", t4); }

43: return 0;

Fig. 1. Example of Orange3 test program.

al (i+7)%n] where n is the size of array a. Csmith [7] is
based on this approach.

Another approach is precomputation based program gener-
ation. Correct behavior of test programs is computed before-
hand according to the language standard. Undefined behavior
is eliminated during program construction based on the pre-
computed values of subexpressions. For example, a/ (x+y)
is rewritten, when and only when x+y evaluates to zero, into
a/ (x+y+c) where c is a non-zero variable. Orange3 [9] is
based on this approach. In general, this approach can generate
more aggressive test programs than the first one, but the range
of the syntax it can handle is much smaller. An example of
the test programs generated by Orange3 is shown in Fig. 1. It
consists only of assign statements with arithmetic expressions.
Although there has been an attempt to extend Orange3 to
handle loops [10], it would be very difficult to detect and avoid
undefined behavior in further complex programs.

The third rather new approach is based on equivalence
transformation on test programs. Given a valid test program,
it generates other test programs by applying transformation
that do not change the output of the program. Proteus [13]
and Athena [14] are based on this approach. Variety of
transformation would be possible, but the two systems use
only limited one; they delete or add code fragments which are
never executed in the programs, identified by code coverage
evaluation.

B. Polarization of Expression and Operand Values

In the C language, result of comparison (such as <=)
is either 0 or 1 of the signed int type. Then randomly
generated arithmetic expressions with comparison operators
tend to evaluate to small values. TABLE I summarizes the
distribution of the resulting values of the expressions in test
programs generated by Orange3. MIN and MAX stand for
the minimum and the maximum values of the type. We can
see that 0 account for a large percentage. As a consequence,
the operands of the all operations should have the same
distribution. Many arithmetic optimization rules are triggered
by particular operand values, but only part of them are well
tested in this situation.

C. Generation of Expressions by Derivation of Syntax Trees

Nakahashi and Yura proposed a derivation based method
of generating random arithmetic expressions without undefined
behavior [11], [12]. In this method, a target value for an ex-
pression is first determined, as 36 in Fig. 2. Then, an operation
and operands are determined so that the expression evaluates
to the target value. In the figure, 36 is expanded to 9<<2. A
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TABLE 1. DISTRIBUTION OF RESULTING VALUES OF EXPRESSIONS IN

ORANGE3 TEST PROGRAMS.

type MIN~—1 0 1 2~MAX
signed int 89% | 42.1% | 23.9% 25.1%
unsigned int 31.7% 3.3% 65.0%
signed long 10.9% | 16.2% 1.5% 71.4%
unsigned long 27.0% 2.3% 70.7%
signed long long 11.9% | 15.9% 1.1% 71.1%
unsigned long long 29.9% 3.5% 66.6%

int t = 36; —

Fig. 2.

Generation of expression by derivation.

value may be replaced by a variable which holds the value.
This process is recursively repeated until the expression of a
desired size is obtained. During derivation, values are chosen
so that they do not trigger undefined behavior. Furthermore,
the values are chosen arbitrarily as long as they do not trigger
undefined behavior.

III. RANDOM PROGRAM GENERATION BASED ON
EQUIVALENCE TRANSFORMATION

A. Overview

In this section, a method of generating random programs
for compiler testing by equivalence transformation on pro-
grams is presented. In this method, a complex valid program
is generated starting from a trivial program by repetitive
application of equivalence transformation.

The trivial program used as the initial seed in our method
is shown in Fig. 3. It is a valid test program whose correct
behavior is to exit without printing anything. An example of
the programs generated by our method is shown is Fig. 4.
Lines 5-69 in the program define variables, lines 71-112 do
computation, and lines 114—128 check if the computation is
correct. It contains nested for and if statements.

B. Transformation Rules

By “equivalence transformation,” we refer to transfor-
mation that does not change the behavior of programs in
terms of their output. This paper introduces the following six
transformation rules.

(1) Adding a variable declaration

A variable declaration statement is added to the program
under generation. The type, the scope (global, static, or local),
and the modifier (none, const, volatile, or const volatile) are
randomly determined. The initial value of the variable is also
chosen randomly from the domain of its type. Fig. 5 (1)
illustrates how this rule is applied to the initial program.

(2) Adding a constant assignment

An assign statement is added, whose left-hand side is a
declared variable and right-hand side is a constant. Fig. 5
(2) shows an example of this rule application. We impose a
restriction that each variable may be assigned only once. This
is to make the minimization procedure in III-D easier. Since
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#include <stdio.h

>
#define NG() printf ("E@NGE\n")

int main (void) (
return 0;
}

Fig. 3. [Initial seed program.
001: #include <stdio.h>
002: #define OK() printf("@OKE\n")
003: #define NG(test,fmt,val) printf("@NGE ("test” = " fmt ")\n",val)
004:
005: static signed long long x40 = 5473828800LL;
031 static unsigned short t18 = 9U;
38:
039: int main (void)
040: 1
041: volatile unsigned int x12 = 437944900;
068: signed long x103 = 143L;
069: signed int i;
070+
071: for( i = ((signed int) (x40/((signed long)x36)));
072: i > ((signed int) (x41-x42));
073: i -= ((signed int) (x43-((signed long)x42)))) {
072
085 if( ((unsigned long) (((unsigned char)x68)/x69)) ) {
086 t7 = ((unsigned long) (x70>>((signed int)x52)));
087 £8 = ((unsigned char) (x71>>((unsigned long long)t2)));
088 '
089: else {
090+ t9 = ((unsigned long) (x72% ((signed long long)x34)));
091: £10 = ((signed char) (x75%((signed long long)x56)));
092: £11 = (((signed char)x21)*x78);
093: £12 = ((unsigned int) (x81&x82));
094: }
112 }
113
114: if (t1 == 3863U) { OK(); } else { NG("t1", "$hu", t1); }
128: if (€17 == 2765) { OK(); } else { NG("t17", "$hd", t17); }
129:
130: return 0;
131: )

Fig. 4. Test program generated by the proposed method.

recent compilers adopt the SSA (static single assignment)
based internal representation, we consider this restriction does
not seriously degrade the bug detection ability.

(3) Adding an if statement

An if statement is introduced into the test program. As
shown in Fig. 6, existing list of statements are partitioned into
four segments, then an if statement, with the second and the
third segments in its then and else parts, is inserted between
the first and the fourth segments. The else part may be omitted
(in which case, the statement list is partitioned into three
segments). At this point, the condition of the if statement
is a constant, a zero or a non-zero random value. Nested if
statements can be generated, as shown in Fig. 5 (3).

(4) Adding a for statement

A for statement is added in the similar way as in (3), as
shown in Fig. 5 (4). Its loop control must be of the format

for (var=expressioni; var<expressions; var+=expressions)

where var is a variable separate from the ones declared in (1).
Each of expression; is a constant at this point.

An important restriction here is that the values of the loop
controlling expressions are chosen so that the loop will iterate
at most once. This drastically eases generation of valid test
programs without undefined behavior. Since the loop count is
unknown to compilers when the loop controlling expressions
contain volatile variables, optimization related to the loop will
still be performed’.

(5) Adding a verification statement

A statement to check the result is inserted, just before the
return statement, as shown in Fig. 5 (5).

(6) Expanding a constant into an expression

Each constant created by rules (2) through (4) is expanded
into complex arithmetic expressions by the method in [11],
[12], as shown in Fig. 5 (6).

'Optimization dependent on the loop iteration count can not be tested by
the program generated by this rule, though.
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int main (veid) { |—
y  return O; Volatile unsigned long t0 = -192L;

int main (void) {
const unsigned short x1 = -445;

Signed long long tl1 = 213LL;
Teturn 07

static signed int x0 = 104;

)

(1) Adding variable declarations.

int main (void) { — int main (void) {
signed int tl = 213; signed_int tl = 213;
refurn 0; tl 18;

}

)

(2) Adding constant assignments.

E?f%“; — if (27 ) { — if (0) {
- i1 t0 = 934L; if ( 27
E% - ;‘;iLL' 1 N (tO :)9§4L,
Slse | Lo
tl = 23; t{ = 23;
, £2 = 41iLL; , €2 = 41iny;
T =2; 1
Slse (
T3 = 2;
A
gogm |
£2 = 41f1L;
t3 = 2;
(4) Adding for statements.
int main (void) f{ — int main (void) {
signed int tl = 10; signed int tl = 10;
t1°= 24; £1°= 24;
return 0; if ((tl !=24) { NGQ; }
) ) return 0;
(5) Adding verification statements.
for (i=3; i<4; i+=1) ( | — for (i=x1+x5; i<x2*x2; i+=x3-x1) {
) tl ='5; tl = (x6 + x3) / x4;
}
(6) Expanding constants into expressions.
Fig. 5. Examples of rule application.
statements statements
statements .

— | statementsa — | if (Oorrand ) {
statements3 statementsa
statementsy } else {

statementss
Statementsy
Fig. 6. Insertion of an if statement.

C. Control of the Operand Values

Our method can arbitrarily determine the values of expres-
sions and operands of subexpressions. This can be used to
enhance bug detection ability of test programs.

At each subexpression derivation step described in II-C,
one of the operand values can be chosen arbitrarily. Here,
we can use random values with non-uniform distribution.
Especially, we can put stress on boundary values. This can
be done by raising the probabilities of choosing the minimum
and the maximum values of the type.

D. Minimization of Error Programs

Once an error is detected by a test program, the cause of
the error must be tracked down to fix possible bugs. For this
purpose, minimization of error programs is an essential process
where the error program is reduced to a program as small as
possible and yet presents the same error.

The minimization procedure in our method is similar to
that of Orange3 [9]. It repeats (1) replacement of expressions
by constants, (2) minimization of expressions, (3) deletion of if
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TABLE II. EXPERIMENTAL RESULT.

. Orange3 Orange4 (uniform) | Orange4 (non-uniform)

Compiler (target) #test | #error #test #error #test #error
GCC-4.8.4 (x86_64-pc-linux) | 57,051 0 | 29,871 0 | 30,187 16
GCC-5.2.1 (x86_64-pc-linux) | 49,402 0 | 30,208 0 | 26,659 16
GCC-6.0.0 (x86_64-pc-linux) | 37,417 0 | 24,762 0 | 21,905 2
LLVM-3.6 (x86_64-pc-linux) | 54,972 1 | 32,778 0 | 29,467 4
LLVM-3.8 (x86_64-pc-linux) | 44,685 1 | 51,985 0 | 24,258 0

time: 72 [h], #op per program: 1000, CPU: Intel Core i7-4930K 3.40GHz, RAM: 15.6GB
non-uniform distribution: MIN 10%, —1 10%, MAX 10%, rand 70%

#define INT_MIN (-2147483647 - 1)

int main (void)

int x0 = INT_MIN;

long x1 = O0L;

int x2 = 0;

int t = (0 || (INT_MIN - (int) (x0 - x1)));
if (t !=0) { x2 = t; __builtin_abort(); }
return 0;

(a) Error program that detected a bug in GCC-6.0.0.

int x = 0;
int v = -1;
int main (void)

{

int a = Ox7FFFFFFF + x;

int b = Ox7FFFFFFF + y;

int t = (unsigned int) a >= (unsigned int) b;
if (t != 1) { _builtin_abort(); }

return 0;

(b) Error program that detected a bug in LLVM-3.9.

Fig. 7. Error programs detected by Orange4.

and for statements, and (4) deletion of variables and constants,
until any of the transformation eliminates the error.

IV. EXPERIMENTAL RESULT

Orange4, a random test system based on the proposed
method, has been implemented in Perl 5, which runs on Ubuntu
Linux, Mac OS X, Cygwin on Windows, etc. Five versions of
GCC and LLVM were tested for 72 hours with options —00,
-03, and -Os. The target size of the programs in terms of the
number of operators was set to 1,000.

TABLE II summarizes the result. Columns “Orange4 (uni-
form)” and “Orange4 (non-uniform)” show the result by Or-
ange4 with operand values of uniform distribution and non-
uniform distribution, respectively. Columns “#test” show the
numbers of the programs tested, and “#error” the numbers
of the programs that detected errors. In the non-uniform
distribution mode, the minimum values are chosen at the
probability of 10%, the maximum values at 10%, —1 at 10%,
and the other values at 70%. The proposed method (Orange4)
with non-uniform distribution succeeded in detecting much
more errors than Orange3.

Fig. 7 (a) and (b) are the minimized error programs that
detected bugs in the latest development versions of GCC-
6.0.0 (20151112 experimental) and LLVM-3.9 (trunk 259289),
respectively. When compiled with —02 option, the both pro-
grams ended up executing __builtin_abort () since the
generated code computed wrong values for variable t. We
had reported the errors to Bugzillas of GCC ([1] #68528)
and LLVM ([2] #26407), respectively, and the both bugs were
fixed. Orange4 also detected an error program with nested for
and if statements, which can not be generated by Orange3, on
GCC-4.5 (The program is omitted for space limitation).
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V. CONCLUSION

This paper has proposed a new method for C compiler
random testing based on equivalence transformation on test
programs. A test system, Orange4, based on the proposed
method detected bugs in the latest versions of GCC and LLVM.

The current version of Orange4 only supports for and if
statements. We are now working on extending Orange4 to
generate arrays, structs, function calls etc., to enhance bug
detection abilities.
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