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Abstract— This paper proposes an extension of

distributed control, which enables efficient run-time

scheduling of variable latency operations, to multi-

ple dataflow graphs. Conventional high-level synthesis

methods determine the execution schedule of opera-

tions statically assuming that their latencies are fixed.

However, actual circuits contain so-called variable la-

tency units whose execution cycles may vary depend-

ing on various run-time factors. Although Del Barrio,

Pilato, and Yamashita have proposed distributed con-

trol methods which can efficiently control circuits with

such units, they only handles a single dataflow graphs.

Our method extends the Del Barrio’s distributed con-

trol to handle multiple dataflow graphs. It enables

dynamic scheduling of operations beyond the bound-

aries of basic blocks which results in fewer execution

cycles than those by conventional centralized control

with loop scheduling and trace scheduling.

I. Introduction

Recent progress in semiconductor technology has en-
abled development of larger and more sophisticated sys-
tems on VLSI chips. While such systems needs enormous
design efforts, there is a strong demand to reduce time
to market. High-level synthesis is one of the promising
measures to expedite hardware design on which many re-
searches have been conducted [1].

In conventional high-level synthesis methods, opera-
tions are scheduled assuming that functional units take
same latencies for the same operations. Namely, the
scheduling is determined ahead of the time and does not
change during run time. However, in actual datapaths,
some functional units exhibit different latencies for the
same operation depending on operands or their environ-
ment. Although the traditional scheduling is still valid if
the maximum latencies are assumed for such units, waste-
ful waiting cycles arise when the units take less latencies
than those of the worst case.

To address this issue, [2] proposed a adaptable con-
troller which adjusts scheduling of operations at run-time
based on the completion signals from the variable latency
units. Although it enables efficient execution without
wasteful waits, the number of its states increased explo-
sively with the size of dataflow graphs (DFGs). As a

promising alternative, distributed control has been re-
cently developed in which a datapath is controlled by
multiple finite state machines. Some different schemes for
distributed controllers have been proposed by Del Barrio
[3], Pilato [4], and Yamashita [5].

However, all these methods deal with a simple case
where computation is expressed with a single DFG. In
order to apply the distributed control in control centric
high-level synthesis, control data flow graphs (CDFGs)
consisting of multiple DFGs must be handled.

This paper, therefore, proposes a method of extend-
ing the distributed controller to rein the variable latency
units to handle multiple DFGs. It is an extension of Del
Barrio’s method. Rather than simply patchworking the
state transition graphs for the DFGs, it enables dynamic
operation motion across multiple DFGs, which achieves
efficient execution like loop scheduling and trace schedul-
ing. An experiment on two benchmarks has proved that
the total execution cycles were drastically reduced by the
proposed method with about 24% increase in the circuit
size.

II. Variable latency units and distributed
control

A. Variable latency units

Functional units in datapaths may exhibit different la-
tencies for the same operation, depending on operand val-
ues, states of the units, and environment factors. For ex-
ample, shift/add-based multipliers and dividers can omit
part of the computation when some part of multiplicand
or intermediate remainder becomes zero. Memory ac-
cesses may take different cycles depending on address his-
tories. NBTI may cause long term change on delays and
latencies of the functional units.

Let us consider executing a DFG in Fig. 1 (a) with an
adder A which takes 1 cycle and a multiplier M which
takes either 1 or 2 cycles. In the conventional high-level
synthesis based on fixed scheduling, the operations are
scheduled as (b) assuming operations 2 and 4 may take
2 cycles. Even when operation 2 completes in 1 cycle,
scheduling is unchanged as shown in (c), where the second
cycle is wasteful.

Toda [2] proposed dynamic scheduling based on the
completion signals from functional units which enables
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Fig. 1. Execution flow with variable latency units.

∗

∗

+

+

1

2

3

4

S0

S1

S2

S3

A M FSM

S4 ∗

+

+

1 2

3 4

S1

S3

S2

S4

∗

A M FSM FSMA M

(a) Centralized control (b) Distributed control of Del Barrio

Fig. 2. Centralized and distributed control

scheduling as shown in Fig. 1 (d). However, the con-
troller for this dynamic scheduling needed huge amount
of states, so the resulting circuit would be impractically
large.

B. Distributed control

As an approach to realizing dynamic scheduling with-
out increasing circuit size, distributed control has recently
been proposed which controls functional units using mul-
tiple finite state machines (FSMs).

In the Del Barrio’s method [3], an FSM is assigned to
each function unit in a datapath. The function unit to
execute each operation is determined beforehand. The
order of the operations executed by each unit is also fixed
and the controller dynamically decides the timings to ex-
ecute the operations. The Pilato’s method [4] controls
the datapath by assigning a state variable to each opera-
tion. As Del Barrio’s method, the function unit to execute
each operation is determined beforehand but the order as
well as the timing of execution of the operations is deter-
mined dynamically. The Yamashita’s method [5] allows
hardware to dynamically decide functional unit to execute
each operation as well as the order and the timing.

However, these methods only discusses the case where
computation is expressed by a single DFG. They have not
addressed the issue of handling a CDFG consisting of mul-
tiple DFGs, which is essential in synthesizing hardware
from specification expressed in programming languages
like C.
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Fig. 3. Distributed control of Del Barrio

C. Del Barrio’s distributed control

In the conventional centralized control method, a whole
datapath is controlled by a single FSM (finite state ma-
chine), as shown in Fig. 2 (a). On the other hand, in Del
Barrio’s distributed control, separate FSMA and FSMM

control function units A and M , respectively, as in (b).
This allows each unit to choose execution timing sepa-
rately.

Fig. 3 is the details of the FSMs in Fig. 2 (b). The for-
mulation in this paper is slightly different from the origi-
nal one in [3], but substantially the same. One state Si is
assigned to an operation i in the DFG, where Si controls
the execution of i. At Si, the FSM waits for starti = 1
where starti becomes 1 if all the operations on which i
depends are finished. In the case of Fig. 3,

start1 = 1,

start2 = 1,

start3 = (s2 ∧ endM ) ∨Done2,

start4 = (s3 ∧ endA) ∨Done3,

where si means that the FSM is in state Si, and endu
is the completion signal from unit u. Donei stands for
completion of operation i, whose initial value is 0 and is
updated as follows.

if (s1 ∧ endA) {Done1 <= 1},

if (s2 ∧ endM ) {Done2 <= 1},

if (s3 ∧ endA) {Done3 <= 1},

if (s4 ∧ endM ) {Done4 <= 1}.

When state is Si and starti = 1, FSMu sets the enable
signal enu of unit u.

enA = ((s1 ∧ start1) ∨ (s3 ∧ start3)) ∧ ExecA,

enM = ((s2 ∧ start2) ∨ (s4 ∧ start4)) ∧ ExecM ,

where Execu means that unit u is in operation, which is
defined as follows.

if (endA) {ExecA <= 0}

else if (enA) {ExecA <= 1},

if (endM ) {ExecM <= 0}

else if (enM ) {ExecM <= 1}.

Del Barrio’s distributed controller exhibits less freedom
than Pilato’s and Yamashita’s, because it can not change
the order of the operations nor the function units to ex-
ecute the operations at run time. However, it is the sim-
plest of the three, and the size and the delay of imple-
mented hardware will be the smallest.
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Fig. 4. Distributed control beyond the borders of DFGs.
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Del Barrio’s method in [3] covers a loop with a sin-
gle DFG, where operations in the next iteration may be
executed without waiting for the completion of a certain
iteration. However, it does not handle a CDFG consisting
of multiple DFGs; it does not cover conditional jumps, for
example.

III. Distributed Control beyond the Borders
of Dataflow Graphs

A. Overview

This paper extends the Del Barrio’s distributed control
to handle multiple DFGs, where dynamic scheduling of
operations is achieved across multiple DFGs.

In the case of the centralized FSM, the control is trans-
ferred to one of the next DFGs after all the operations
in the current DFG are finished. By applying the same
policy, the distributed control may be extended to mul-
tiple DFGs. However, in the presence of variable latency
operations, not all the units finish their task in an DFG si-
multaneously but they must wait for each other at the end
of the DFG. To reduce the inefficiency, in our method,
operations in the next DFG can start execution before
concluding the current DFG. For example, in Fig. 4 where
two units are controlled by two controllers, the operations
corresponding to S0 and S3 are finished (as in (a)), then,
the control of the second FSM can be transferred from
S3 to S11, without waiting for the completion of S1, if
DFG3 is known to be the next DFG of DFG1.

In this paper, we assume that only one DFG ahead of
the current DFG may be executed. The current DFG
is hereafter referred to as a main DFG and the partially

executed next DFG a frontier DFG. In Fig. 4 (b), DFG1
is the main DFG and DFG3 is the frontier DFG. A self
loop is eliminated by duplicating the DFG, as shown in
Fig. 5.

For design convenience, each FSM of a unit must have
at least one state per DFG; if there is no state for a DFG, a
dummy state in which no operation is executed is inserted.

B. Formulation

Let U be the set of units in the given datapath. For
u ∈ U , ou and eu are the output and the completion signal
of u at the current cycle, respectively. Let D be the set of
DFGs. An FSM to control unit u ∈ U and DFG d ∈ D is
denoted as Fd,u. Let Sd,u and fd,u be the set of states and
the last sate of Fd,u, respectively, and σd,u be the current
state of Fd,u.

For d ∈ D and s ∈ Sd,u, Γ(s), γ(s), and e(d) are defined
as follows. Intuitively, Γ(s) means that execution of the
operation at state s has been finished before the current
cycle, γ(s) means that execution of the operation at state
s is finished at the current cycle, and e(d) means that
execution of DFG d completes at the current cycle. Γ0(s)
and Γ′(s) are the initial value and the next value (the
value at the next cycle) of Γ(s), respectively.

γ(s) = Γ(s) ∨ ((σd,u = s) ∧ eu)

e(d) =
∧

u∈U

γ(fd,u)

Γ0(s) = 0

Γ′(s) = if e(d) then 0 else γ(s)

When e(d) becomes 1, the next state of Fd,u is the initial
state for every u ∈ U .

For e ∈ D and d ∈ D, Δ(e, d) means that transition
from e to d has been fixed before the current cycle, and
δ(e, d) means that transition from e to d is fixed at the
current cycle. If d is the unique successor of e, then
Δ(e, d) = δ(e, d) = 1. Otherwise, δ(e, d) and Δ(e, d) are
defined as follows assuming that the transition from e to
d is determined by the output of unit u at state s.

δ(e, d) = Δ(e, d) ∨ ((σe,d = s) ∧ eu ∧ ou)

Δ0(e, d) = 0

Δ′(e, d) = if e(e) then 0 else δ(e, d)

M(d) means that d ∈ D is executed as the main DFG,
whose initial valueM0(d) and next valueM

′(d) is defined
as follows, where Pd is the set of DFGs preceding d.

M0(d) = if d is the starting DFG then 1 else 0

M
′(d) = if e(d) then 0

else M(d) ∨
∨

e∈Pd

(e(e) ∧ δ(e, d))

F(d) means that DFG d ∈ D is executed as the frontier
DFG, whose initial value F0(d) and next value F ′(d) is
defined as follows.

F0(d) = 0

- 174 -



TABLE I
Experimental result (#cycle)

centralized distributed (proposed)
r = 1.0 r = 0.5 r = 0.0

diffeq 770 770 632 513
iprod64 710 740 541 422

Loop iteration: 128, multiplication: 1 2 cycles,
r: probability where multiplication took 2 cycles,

F
′(d) = if M

′(d) then 0

else F(d) ∨
∨

e∈Pd

(M′(e) ∧ δ(e, d))

The operations in DFG d are executed only if M(d) ∨
F(d). All the other conditions are same as the Del Bar-
rio’s control in subsection II-C.

IV. Experimental Result

RTL circuits based on the proposed distributed control
were designed in Verilog HDL for two benchmark CD-
FGs and compared with ones based on the conventional
centralized control. Throughout the experiments, it was
assumed that multiplication took either 1 or 2 cycles and
the other operations took 1 cycle.

A. Benchmark CDFG

(1) diffeq

A DFG in Fig. 6(a) is executed with two adders A1 and
A2, and two multipliers M1 and M2. Fig. 6(b) is an exam-
ple of binding and scheduling for distributed control. The
DFG is duplicated to remove the self loop. For compar-
ison, the same DFG is scheduled for centralized control,
as shown in Fig. 6(c).

(2) iprod64

The DFG in Fig. 7(a) computes the inner product of
64-bit data, where 64-bit multiplication is implemented by
four 32-bit multiplications and three additions. However,
some of the computation may be skipped, if the higher or
the lower half of the multiplier is 0. The DFG is computed
with an ALU (A), an ALU+shifter (AS), a multiplier (M),
a load/store unit (L), a comparator (E). C in the DFG
represents data transfer without operation.

Fig. 7(b) shows an example of scheduling/biding for
our distributed control. The self loops are eliminated
by duplicating DFG0. Since our method requires that
the FSM for each unit must have at least one state for
each DFG, dummy states (depicted by the broken lines),
which do not issue any operation and just transfer to the
next state, are inserted for such DFGs. For comparison,
the same computation is scheduled for centralized con-
trol with the same numbers of the units. Fig. 7(c) is the
CDFG obtained by trace scheduling.

B. Performance (cycle count)

Table I compares the cycle counts on the two bench-
marks. The loop was iterated 128 times on the both
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Fig. 6. Benchmark “diffeq.”

benchmarks. The column “centralized” shows the re-
sult for the conventional fixed centralized control with the
scheduling in Fig. 6(c) and Fig. 7(c), where the latency of
all the multiplications were fixed at two cycles. The col-
umn “distributed” shows the cycle counts for our variable
and distributed control. The parameter r is the probabil-
ity where multiplication took 2 cycles; r = 1.0 means all
the multiplications took two cycles, while r = 0.5 means
half of the multiplications took two cycles and the others
one cycle. In the iprod benchmark, the each of the upper
32-bit and the lower 32-bit became 0 with a probability
of 50%.

On the diffeq benchmark, the proposed method
achieved the same cycle count as the loop scheduling on
r = 1.0. Furthermore, our distributed control is much
efficient than the centralized scheduling on r = 0.5 and
r = 0.0.

On the iprod benchmark, however, our method resulted
in an increase in the cycle count. This is due to insertion
of the dummy state and its root cause is that our method
allows operation execution in the DFG only one transition
ahead of the current active DFG. Nevertheless, the pro-
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TABLE II
Experimental result (circuit size)

centralized distributed (proposed)
slices (FFs) delay [ns] slices (FFs) delay [ns]

diffeq 567 (331) 15.044 702 (441) 14.878
iprod64 724 (464) 14.492 890 (556) 15.871

posed variable scheduling reduced the cycle count when
r = 0.5 and r = 0.0.

Fig. 8 shows examples of execution traces of the dif-
feq benchmark by our method. (a) is the case where all
the multiplications take two cycles. Units A1, M1, and
M2 can start the second iteration (highlighted by red) be-
fore A2 finishes the first iteration, so cycle per iteration
is reduced to 6. This is equivalent to the loop schedul-
ing (determined ahead of the execution). (b) shows the
case where 6 out of 12 multiplications finish in 1 cycle.
Scheduling is dynamically adjusted beyond the border of
the DFGs which contributes to the drastic reduction in
the total cycle count.

An execution trace example for iprod64 is also shown
in Fig. 9 with r = 1.0. The result is almost equivalent to
the conventional trace scheduling, except that the dummy
state, indicated by (1), increases the cycle count by one.
Note that this occurs only when all the multiplications
take 2 cycles; if one of them finishes in 1 cycle, the dummy
state is not on the critical path and does not cause the
increase in the cycle count.

C. Circuit size

TABLE II summarizes the result of logic synthesis by
Xilinx ISE (14.7) targeting FPGA (Spartan–3E). The
columns slices, FFs, delay show the circuit size in terms
of slices and flip-flops, and the critical path delay. The
circuits in our control method is about 24% larger than
those by the conventional implementation. This is due to
the increase in the number of registers (and consequently
increase in the total multiplexer cost) because the life-
times of the values overlap more frequently in variable
latency scheduling. The critical path delay is almost the
same. Thus we may conclude that the proposed controller
can be implemented in hardware of a feasible size.

V. Discussion

Like the loop scheduling and trace scheduling meth-
ods, the proposed method yields efficient computation
scheduling by moving operations across DFGs. In addi-
tion, our distributed control allows run-time adjustment
of the scheduling in response to varying latency of opera-
tions. On the other hand, our method may be less efficient
than the conventional (fixed) scheduling because it allows
operations to move only to the adjacent DFGs.

It is possible to apply Del Barrio’s distributed control to
a DFG obtained by loop scheduling and trace scheduling,
which enables both operation motion across DFGs and
run-time scheduling. This combination may outperform

our method on the presumed execution trace on which
the scheduling is determined, because operations can be
moved by more than one DFGs. However, our distributed
control may work better when the prediction fails, because
it can handle both the predicted/unpredicted branches
equally.

In our method, as well as in trace and loop schedul-
ing, operation motion does not work when branch
taken/untaken is determined at the final step of a DFG.
This issue may be addressed by introducing branch pre-
diction and speculative execution.

VI. Conclusion

This paper has presented a distributed control method
that allows dynamic operation motion across DFGs for
efficient scheduling under the existence of variable la-
tency operations. Experiment on two benchmarks demon-
strated drastic reduction in execution cycles with about
24% increase in hardware size.

We are now working on adapting our method to other
distributed control methods such as [4] and [5], and on
introducing branch prediction and speculative execution
to further enhance performance.
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Fig. 7. Benchmark “iprod64.”
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