
Exploring Parameter-Type Compiler Options

for Accelerating Program Execution

Takeo Saeki, Junya Goto, Nagisa Ishiura

School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan

Abstract—This paper proposes an extensive use of

parameter-type compiler optimization options to speed

up program execution. Compilers usually provide a lot

of options to control their optimizers. However, existing

methods of exploring the best option sets for given

programs dealt only with switch-type options which

specifies activation/deactivation of individual optimizers.

This paper extends the search domain to parameter-type

options which control optimizers by numerical values. A

genetic algorithm is employed to explore the best com-

bination of the parameters as well as the optimization

switches for given programs. An experiment on GCC

4.8.1 with four benchmark programs shows that the

proposed method accelerates the program execution by

10.4%, at the cost of 38.0% increase in the exploration

time.

I. INTRODUCTION

Optimization to enhance the efficiency of codes

is the core task of compilers, and modern compilers

implement a lot of transformations for optimization.

Since the effects of the transformations depend on

the properties of the programs and some optimization

may even degrade the performance, some compil-

ers provide options to control individual optimizers.

However, as the number of options increases, it gets

difficult to find option sets which best match with

given programs. Since GCCs later than version 4.0

have more than 100 options, it is virtually impossible

to tune the option set manually.

To meet this issue, there have been a lot of re-

searches to automate the searches for the best com-

binations of optimization options for given programs.

Pan [1] and Lin [2] attempted to find the option sets

by iterative methods and by an genetic algorithm,

respectively. Their main target was the speed of the

resulting codes and they succeeded in outperforming

GCCs’ -O3 option which turns a pre-selected set of

optimization options. On the other hand, Patyk [3]

tried to reduce energy consumption through automatic

selection of compiler options based on a statistical

non-parametric analysis. Haneda [4] used the similar

method to reduce the size of object codes.

All those researches have dealt only with switch-

type options, which activate or deactivate optimiz-

ers. However, more recent compilers such as GCC

4.8.1 accept parameter-type options, through which

optimizers are controlled by numeric values. Such

options might further enhance the performance of the

execution codes, but there have been no research to

extend the option set search to the parameter-type

options.

In this paper, a genetic algorithm based search

for the best options, considering both the switch-

type and the parameter-type options, is proposed. A

vector of parameter values to the options (0 or 1 for

the switch-type options) is used as the chromosome

representation of an individual in a population. The

execution time of compiled codes is measured using

a UNIX time command where codes are run multiple

times to make the measurement precise.

An experiment on GCC 4.8.1 with four benchmark

programs shows that the utilization of parameter-

type options accelerated the program by 10.4% on an

average, which makes the programs faster than -O3

option by 40.2%.

II. COMPILER OPTION SETS FOR OPTIMIZATION

Recent compilers implement many optimizing

transformation routines. They also provide command

line options to control each of the optimizers. The

options are classified into switch-type options and

parameter-type options, where the former specify

activation/deactivation of the optimizers and the latter

feed numeric values to the optimizers.

For example, GCC 4.8.1 has 186 switch-type op-

tions. An -fdse command line option turns on a

dead code elimination routine and an -fno-dse

turns it off. Besides them, it has 154 parameter-

type options. A --param max-inline-insns-

single=100 option, for example, limits the number

of the instructions resulting from inline expansion

to 100. Options to specify optimization levels, such

as -O1 through -O3, set predefined values to these

options. For example, the -O1 option turns on 38 out

of the 185 options.

Options sets tailored for given programs often

produce higher code performance than the standard

optimizing options. As will be shown in the experi-

mental results, tuning of the switch-type options only

- 725 -



end

start

apply crossover and mutation

select two (parent) individuals

generate initial population

replace individuals

r times?

Fig. 1. Flow of genetic algorithm based search.

accelerates the code by 27.0% as compared with the

-O3 option, so its worth exploring the option sets.

However, switch-type options of GCC 4.8.1 alone

result in 2186 possible combinations. Since it is infea-

sible to find the best one by hand or by exhaustive

search, there have been researches to search optimal

solutions for given programs by meta heuristics, ma-

chine learning, etc.

III. INCORPORATING PARAMETER-TYPE OPTIONS

IN OPTION SET SEARCH

A. Genetic Algorithm Based Search

Given a source program, our goal is to find a set

of the switch-type options to be turned on and a

value vectors to all the parameter-type options that

minimizes the execution time of the compiled code.

In this paper, a genetic algorithm is employed to find

optimal solutions.

B. Encoding of Option Set

A solution, or an individual in a population, is

represented simply by a vector of the values to

the options, where the value for each switch-type

option is 0 or 1, meaning deactivation or activa-

tion, respectively. Some parameter-type options may

have large domains. To curve the search complexity,

we reduce the domains to the set of representa-

tive values. For example, when an option’s domain

is {1, 2, 3, 4, 5, · · · , 1024} (of 1024 elements), we

assume a reduced domain {1, 2, 4, 8, · · · , 2014} (of

11 elements). The representative values are selected

taking the properties of the options into account.

C. Fitness Function

Since our goal is the reduction of the execution

time of a given program, the fitness function of each

individual is defined as the execution time of the

code generated with the option set encoded in the

individual.

We assume that the time is in terms of the real

run time on a target computer, which is measured for

TABLE I

EXAMPLE OF SELECTION PROBABILITIES.

fi wi = (fmax − fi)
2 pi = wi/W

1.2 0.64 45.1%

1.3 0.49 34.5%

1.5 0.25 17.6%

1.8 0.04 2.8%

2.0 0.00 0.0%

fmax = 2.0, W =

∑
wi = 1.42

example by a UNIX time command. Here, fluctu-

ation becomes a problem, since the code execution

time varies largely depending on various conditions,

such as the status of the cache or the other processes

running on the computer system.

To solve this problem, we run the code multiple

times and pick the smallest run time as the fitness

function value. We use the minimum time instead of

the average time because the factors outside of the

program only delays the execution, so the minimum

time best reflects the effect of the optimizers.

We change the number (k) of runs during the

search; we start with k = 1 (to curve total execution

time) and gradually increase k as the search converges

(to increase accuracy).

D. Selection, Crossover, and Mutation

Fig. 1 shows the flow of the search. It starts with

generating an initial population. Let the population

consist of n individuals. The option value vector for

each individual is randomly chosen.

Then, the loops are repeated for r times. First, two

individuals (parents) are chosen from the population.

Crossover and mutation are applied to generate two

new individuals. Some two individuals in the popula-

tion are replaced by the new individuals.

In our method, the parents are picked up by a

roulette selection method. Namely, each of the two

individuals is chosen with the probability defined to

the individual. Let fi be the fitness value of the

individual i, and fmax be the maximum value of fi
among the population. Then individual i is selected

with a probability proportional to its weight wi which

is defined as:

wi = (fmax − fi)
2

Let W be the sum of wi over all the individuals, then

the probability pi with which i is chosen is pi =

wi/W .

TABLE I shows an example of the selection prob-

abilities, where the population consists of individuals

with fitness values 1.2, 1.3, 1.5, 1.8, and 2.0. The

second column and third column are the weights and

the probabilities of the individuals. The weight is

designed so that individuals with better fitness values

may be selected more probably.

- 726 -



TABLE II

EXPERIMENTAL RESULT.

program
execution [s] exploration [h]

-O0 -O3 sw sw+p sw sw+p

b queen.c 5.42 1.41 1.08 0.86 2.71 4.67

fasta.c 6.19 1.60 1.07 1.10 3.13 5.20

nbody.c 14.17 2.16 1.97 1.71 6.40 6.72

bitcnts.c 4.24 1.59 1.31 1.24 4.06 4.90

ratio [%] 563.0 140.2 110.4 100.0 100.0 138.0

Compiler: GCC 4.8.1 (x86)

CPU: Intel Core i2 (1.4 GHz)

Memory: 3.8 GB

OS: Ubuntu 13.10

Crossover and mutation operations in our method

are very conventional. A uniform crossover operation

is employed. During mutation, the value of each chro-

mosome is changed at a certain mutation probability.

New two individuals generated from the parents

are inserted into the population. Instead, the two

individuals with the worst fitness values are discarded.

IV. EXPERIMENTAL RESULT

Based on the method stated so far, a search program

has been implemented in Perl 5 which runs on Unix

operating systems.

An experiment was done on four C programs. The

compiler used in the experiment was GCC 4.8.1 for

x86 target. Out of all the optimizing, those caused

errors or warnings were excluded. This resulted in

164 switch-type and 134 parameter-type options. The

program was run on Ubuntu 13.10 on Intel Core i2

CPU (1.4 GHz) with a 3.8 GB memory.

The parameter settings for the genetic algorithm

were as follows:

• population size: 100

• iteration: 1,000

• mutation probability: 0.05

Candidate option sets obtained during the search were

given to GCC compiler together with the -O3 option.

This is because the GCC has implicit optimizing

options which can only be activated by either of the

standard optimization option. Generated codes were

executed 1 to 5 times, depending on the iteration

count, to measure the execution time of the codes.

TABLE II shows the result of the experiment.

Columns -O0 and -O3 are the execution time (sec-

onds) of the generated codes by GCC’s standard opti-

mization options, where -O0 means no optimization

and -O3 optimization with the highest level. The next

two columns are the execution time resulted from op-

tion set search with the switch-type options only (sw)

and with the options of the both types (sw+p), where

the latter is the proposed method in this paper. The

last two columns indicate time (hours) consumed for

the option set search for the two methods. The bottom

row “ratio” shows the geometric means normalized to

sw+p for execution time and sw for exploration time.

We can see that the programs were accelerated by

10.4% by incorporating the parameter-type options

into the search. This was a speed-up by 40.2% as

compared with the -O3 options. The search time was

increased by 38.0% which we believe is reasonable.

V. CONCLUSION

This paper has proposed the utilization of

parameter-type compiler options as well as switch-

type options to enhance the performance of com-

piled codes. An experimental result demonstrated that

genetic algorithm based search successfully found

option sets which accelerates the execution speed of

the code.

Future work includes refinement of the genetic

search procedure, and consideration of other objec-

tives such as the size or power consumption of the

generated codes.

ACKNOWLEDGMENT

We would like to thank Prof. Tomiyama of Rit-

sumeikan University for his advice on the definition

of fitness function. Authors would like to express our

thanks to all the members of Ishiura Laboratories

of Kwansei Gakuin University for their advice and

discussion for this work.

REFERENCES

[1] Z. Pan and R. Eigenmann: “Fast and Effective Orchestration of

Compiler Optimizations for Automatic Performance Tuning,”

in Proc. International Symposium On Code Generation and

Optimization, pp. 319–332 (Mar. 2006).

[2] San-Chih Lin, Chi-Kuang Chang, and Nai-Wei Lin: “Auto-

matic Selection of GCC Optimization Options Using a Gene

Weighted Genetic Algorithm,” in Proc. Computer Systems

Architecture Conference, pp. 1–8 (Aug. 2008).

[3] T. Patyk, H. Hannula, P. Kellomaki, and J. Takala: “Energy

Consumption Reduction by Automatic Selection of Compiler

Options,” in Proc. International Symposium on Signals, Cir-

cuits and Systems, 2009, pp. 1–4 (July 2009).

[4] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff:

“Code Size Reduction by Compiler Tuning,” in Proc. Interna-

tional Conference on Embedded Computer Systems: Architec-

tures, Modeling, and Simulation, pp. 186–195 (July 2006).

- 727 -




