
Instruction Code Compression

for Application Specific VLIW Processors

Based on Automatic Field Partitioning

Nagisa Ishiura†

ishiura@ise.eng.osaka-u.ac.jp

† Dept. Information Systems Engineering
Osaka University

Suita, Osaka, 565 Japan

Masayuki Yamaguchi†,††

masa@edag.ptdg.sharp.co.jp

†† Precision Technology Development Center
Sharp Corporation

Tenri, Nara, 632 Japan

This paper presents a method of reducing the instruc-

tion memory size of application specific VLIW proces-

sors. Given an object code of a processor, we try to

compress it by recoding each instruction word with a

smaller number of bits. The problem of finding a good

coding which achieves large reduction and yet curbs

the size and the delay of the decoder is reduced to

the problem of finding a good field partitioning. By

establishing a relation between a field partition and

the cost of the program and decoders, we formulate

an optimum field partitioning problem in which a field

partition minimizing the cost of the program and the

decoder is sought. We have developed an approxima-

tion algorithm to solve this problem. In a prelimi-

nary experiment on three sets of practical VLIW pro-

cessors and application programs, the total objective

cost, which is defined as the sum of the total bits of

the coded program and the size of the ROMs to im-

plement the decoder, is reduced into 46%∼60% of the

original ones.

I. Introduction

A VLIW architecture is becoming increasingly popu-
lar in embedded processor design, for the simultaneous
activation of multiple hardware resources enables fast ex-
ecution of softwares in audio and video applications. A
drawback of this architecture is that the memory space
to store the instruction code becomes larger. The long
instruction word, whose every bit may not be utilized in
every execution step, leads to large instruction memory
size. Since the size of the memory is directly related to
the hardware cost and the power consumption, the reduc-
tion of the instruction memory size will be beneficial to
the overall cost-performance of the system.

One resource we can exploit for this purpose is the fact
that processors are application specific. By making cer-
tain modifications to the instruction set or on the instruc-
tion formats taking the characteristics of the given pro-
gram into account, we may be able to reduce necessary

bits to store the program.
Unlike the methods of redesigning both the instruc-

tion set and the datapath architecture, or the methods
of synthesizing an instruction set and a datapath archi-
tecture from a given set of benchmark programs [Hua93],
we start from where a datapath architecture and an ap-
plication program to be executed on it are given. We
assume a hardware designer has “done a good job” in de-
signing datapath architecture taking the characteristics of
the program and various constraints on the hardware into
consideration, using support tools such as an architecture
evaluator [Yam97]. Thus what we try to do here is to
compact the program without touching the datapath.

One method of doing this is to store the program in a
compressed form (Figure 1). When the processor fetches
the next instruction, it is supplied by way of a decoder
that expands the compressed code. So far, a cache-based
method [Koz94] and a code-by-code method [Yos97] have
been proposed. The former encodes the program by the
unit of a cache block. It achieves high compression ratio
with the use of variable length coding, but the delay and
the cost of the decode engine will be significantly large.
Moreover, it does not fit in the architectural scheme if the
processor does not employ an instruction cache. The lat-
ter encodes each instruction word by fixed length coding.
If the program consists of M different code words, then
each word can be encoded with ⌈log M⌉ bits. The problem
again is the the size of the decoder. Even in the code-by-
code approach, the decoder size, measured in ROM bits
to implement the decoder, is 2⌈log M⌉×(instruction word
size) bit large and could offset the gain obtained by the
code compression.

In this paper, we propose an improved code-by-code
method which can reduce the program size while curbing
the decoder size. The idea is to introduce field partition-
ing. As is usually done in designing vertical microinstruc-
tion sets from horizontal microinstruction sets, the orig-
inal instruction word is partitioned into several fields so
that the decoder for each field stays within a reasonable
size. In order to obtain a good field partition automati-

105

ishiura
タイプライターテキスト

ishiura
タイプライターテキスト

ishiura
タイプライターテキスト
Proc. International Workshop on Synthesis And System Integration of MIxed Technologies (SASIMI '97)

ishiura
タイプライターテキスト

ishiura
タイプライターテキスト

ishiura
タイプライターテキスト

ishiura
タイプライターテキスト
Osaka, Japan, August 1997

cally, we formulate a field partitioning problem and give
an approximate solution to this problem.

This method is applicable to all kinds of processors with
fixed instruction word length, but we think it is especially
effective for VLIW processor. In a preliminary experiment
on three sets of industrial VLIW processors and applica-
tion programs, the total objective cost, which is defined
as the sum of the total bits of the coded program and the
size of the ROMs to implement the decoder, is reduced
into 46%∼60% of the original ones.

In the following sections, we first formulate the opti-
mum field partitioning problem and then show an approx-
imation algorithm. After presenting the experimental re-
sults, we discuss pros and cons of our approach.

ad
dr

es
s instruction

instruction
memory

instruction

instruction
memory
(coded)

processor

decoder

processor

ad
dr

es
s

Figure 1: Configuration of a processor and an instruction
memory

II. Optimum Field Partitioning Problem

A. Formulation

Let a given application specific program consist of N

instructions, each of which is w bit long. Let B =
{b1, b2, · · · , bw} be the set of bit positions in an instruc-
tion word. Then a field partition F = {f1, f2, · · · , fn} is a
partition of B where fi ⊆ B, f1∪· · ·∪fn = B, fi 6= φ, and
fi ∩ fj = φ for i 6= j. We call each fi a field. Let M(fi)
be the number of different bit patterns appearing in field
fi of the program. For example, if a program consists
of only ADD and SUB instructions, then the number of
different bit patterns that appears in the field specifying
the operation is two. Let m(fi) be the number of bits to
encode the M(fi) patterns of field fi. Since we assume
the minimum number of bits, we have

m(fi) = ⌈log M(fi)⌉.

The size of the (coded) program for partition F , denoted
by P (F), is expressed as

P (F) =
∑

fi∈F

N · m(fi).

The decoder size D(F) for partition F is

D(F) =
∑

fi∈F

d(fi)

where d(fi) is the decoder size for field fi. There are var-
ious ways of defining a decoder cost, but here we define it

1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0 1
1 0 1 0 0 0 1 0 0 1
1 0 1 0 0 1 0 0 0 1
1 0 1 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0 0 1
1 1 0 0 0 1 0 0 0 1
1 1 0 1 0 0 0 0 0 1

Figure 2: Sample program.

as the size of the ROM, in terms of bits, which implements
the decoder. Thus d(fi) is defined as

d(fi) =

{

|fi| · 2
m(fi) (m(fi) ≥ 2)

0 (m(fi) ≤ 1)
.

The reason why d(fi) is 0 for m(fi) ≤ 1 is that decoder is
implemented with only wires or inverters. Our objective
cost T (F) is the sum of the program size and the decoder
size.

T (F) = P (F) + D(F).

Finally, an optimum field partitioning problem is a prob-
lem to find a field partition F that minimizes T (F) for a
given program.

B. Examples of Field Partitioning

Let us illustrate how field partitioning works using a
simple example in Figure 2. The instructions are sorted
for easier understanding. It consists of 30 instructions and
each instruction word is 10 bit long. The original program
size is 10 × 30 = 300 bits.

In the 30 instructions, we have only 22 different instruc-
tions, for some instructions are repeatedly used. Then we
can code the 22 patterns using ⌈log 22⌉ = 5 bits. By
this coding, the program size becomes 5 × 30 = 150 bits,
the half of the original one. However, we must count the

106

cost of the decoder. If it is implemented by an ROM,
the necessary bits are 25 × 10 = 320. The total cost of
150 + 320 = 470 bits is even larger than the original pro-
gram.

Now we see a few ways of field partitioning. The first
three bits (bits 1–3) may correspond to a field that chases
ALU operations. In this example, we see only four differ-
ent patterns on this three bit field. Then we can recode
them using two bits. Similar y bits 4–7 that presents only
four different one-hot-code patterns can be coded with
two bits. This kind of patterns may be generated in ar-
bitrating bus access or selecting operands. Since the final
bits 8–10 shows only three distinctive patterns and coded
with two bits, the coded instruction word will consist of
2 + 2 + 2 = 6 bits (see Figure 3 (a)). The decoder sizes
are

22 × 3, 22 × 4, and 22 × 3

which accumulate to 40 bits. Total hardware cost with
this field partitioning is 6 × 30 + 40 = 220 bits.

Depending on programs, it is sometimes effective to
make the field larger. By grouping bits 4–10 into a single
field, we find only eight patterns out of possible twelve
patterns. This corresponds to the case where the pat-
terns of operand references are somehow limited. If we
code this with three bits, as shown in Figure 3 (b), the
instruction word becomes 5 bit long. Since the decoder
size is 22×3+23×7 = 68, the total cost is 5×30+68 = 218
bits and slightly better than the previous one.

We need not restrict ourselves to the knowledge of a
relation between the bits and the hardware control. We
could detach the bit 1 from bits 2–3 and join it with bit
8–10. The resulting field partition (Figure 3 (c)) also
produces an instruction format of 5 bit long. The decoder
cost of 0× 2+ 22 × 4+ 22 × 4 = 32 bits and the total cost
becomes 150 + 32 = 182 bits. In this way, we can make
good use of a correlation between a specific operation and
its operand reference patterns.

III. Approximation Algorithm

We have developed an approximation algorithm to solve
the field partitioning problem, for it would take enormous
computation time to find exact solutions.

Our algorithm tries to search an optimal partition by
merging fields starting from the primitive partitioning
F = {{b1}, {b2}, · · · , {bw}} where each field consists of
a single bit. Merges of the largest cost gains are applied
repeatedly until we have no more cost improvement.

This scheme is, unfortunately, easily trapped by local
optima. Merges which would produce good field parti-
tion in the future are often rejected because the cost gain
at hand is zero. To counter this problem, we introduce
auxiliary costs T ′(F) and T ′′(F) which can express the
quality of the merges more precisely.

Let us consider the example of Figure 4 (a). If we merge
1, 2, and 3, the number of the different patterns on this

f1

1 2 3
0 0 1 0 0
0 1 0 0 1
1 0 1 1 0
1 1 0 1 1

1 2
f ′
1

f2

4 5 6 7
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

3 4
f ′
2

f3

8 9 10
0 0 1 0 0
0 1 0 0 1
1 0 0 1 0

5 6
f ′
3

(a) Field partitioning (1).

f1

1 2 3
0 0 1 0 0
0 1 0 0 1
1 0 1 1 0
1 1 0 1 1

1 2
f ′
1

f2

4 5 6 7 8 9 10
0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 1 0 1 1
0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 1 0
1 0 0 0 0 0 1 1 1 1

3 4 5
f ′
2

(b) Field partitioning (2).

f1

2 3
0 1 0
1 0 1

1
f ′
1

f2

4 5 6 7
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

2 3
f ′
2

f3

1 8 9 10
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 1 1

4 5
f ′
3

(c) Field partitioning (3).

Figure 3: Examples of field partitioning.

1 2 3
0 0 0
0 0 1
1 1 1
1 0 1

1 2 3 4 5
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 1 0 1 1
1 0 1 0 0
1 0 1 0 1
1 1 1 0 0
1 1 1 1 1

(a) (b)

Figure 4: Fraction of a program.

107

field will be four. The field can be recoded with two bits
and we can save one bit. However, in order to merge the
three bits by our algorithm, we should first merge either
two bits of them. The merge of any two bits of the three
results in three different patterns, which requires two bits.
Since the merge does not reduce the necessary bits for the
instruction word, the merge of any two bits is rejected and
we have no way to merge the three bits.

This type of rejection of merges is due to the fact that
the cost is not improved until the number of different
patterns decreases below 2’s power. The merge which
largely reduce the number of different patterns should be
selected even if the cost gain on the spot is zero, for it
may lead to significant reduction of the cost in the future.
For this purpose, we use exact value of log M(fi), instead
of ⌈log M(fi)⌉, to represent the necessary bits to encode
the field. In the example above, the necessary bits to
recode the new field obtained by merging bits 1 and 2 is
evaluated to be log 3 = 1.58, instead of ⌈log 3⌉ = 2, which
makes the gain positive. The approximate cost function
T ′(F) is created in this way, which is formally defined as
follows:

m′(fi)=log M(fi),

d′(fi) =|fi| · 2
m′(fi),

P ′(F)=
∑

fi∈F

N · m′(fi),

D′(F)=
∑

fi∈F

d′(fi),

T ′(F) =P ′(F) + D′(F).

Unlike in the exact cost T (F), the decoder cost d′(fi) is
not defined as zero even for m′(fi) ≤ 1. This is due to the
same reason why we do not round up the value of m′(fi).

The other cost function T ′′(F) attempts to evaluate
the quality of the merges even more precisely than T ′(F).
Consider an example in Figure 4 (b). Both the merge of
bits 1, 2 and the merge of bits 3, 4 result in four differ-
ent patterns and thus present the same cost gains in the
previous cost functions. However, the distribution of pat-
terns is less uniform in the field (3,4) than (1,2). Since
the merges resulting in biased distribution can lead to the
reduction of different patterns in future merges, it should
be given a higher priority. (Compare the merge (1,2,5)
and (3,4,5)). The bias is well-known to be numerated as
entropy. It fits into our scheme very well, because the
entropy of an information source works as a lower bound
of the number of bits to encode the symbol of the source.
Let H(fi) be the entropy of the set of patterns appearing
in field fi. Then the cost T ′′(F) is defined as follows:

F ← {{b1}, {b2}, · · · , {bw}};
repeat {

find (fi, fj) ∈ F × F that maximize G(F, fi, fj);
if (G(F, fi, fj) > 0) merge fi and fj ;
else {

find (fi, fj) ∈ F × F that maximize G′(F, fi, fj);
if (G′(F, fi, fj) > 0) merge fi and fj ;
else {

find (fi, fj) ∈ F × F that maximize G′′(F, fi, fj);
if (G′′(F, fi, fj) > 0) then merge fi and fj ;

}
}

} until (no more merge occurs)

Figure 5: Approximation algorithm for field partitioning.

m′′(fi)=H(fi),

d′′(fi) =|fi| · 2
m′′(fi),

P ′′(F)=
∑

fi∈F

N · m′′(fi),

D′′(F)=
∑

fi∈F

d′′(fi),

T ′′(F) =P ′′(F) + D′′(F).

Our approximation algorithm is constructed using
the three cost functions as listed in Figure 5. Here,
G(F, f1, f2) is the gain of the cost T obtained by merg-
ing f1 and f2 in field partition F . Let F(f1,f2) denote
the new field partition obtained by merging f1 and f2 in
field partition F , then G(F, f1, f2) = T (F) − T (F(f1,f2)).
G′(F, f1, f2) and G′′(F, f1, f2) represent the gains of costs
T ′ and T ′′, respectively, which are defined in the same
way. Starting from an initial partitioning where each field
consists of a single bit, merges of two fields are tried until
there are no candidates. If there exist field pairs that im-
proves T (F), then a merge of the largest gain is adopted.
If no field pairs improve T (F), then a merge that shows
the largest gain of T ′(F) is adopted. Furthermore, if we
have no field pairs that improve T ′(F), then a merge of
the largest gain in T ′′(F) is adopted. Finally, when even
the improvement of T ′′(F) is impossible, the algorithm
finishes.

In order to find a pair of fields (fi, fj) that maximize
G(F, fi, fj), G′(F, fi, fj), and G′′(F, fi, fj), we must com-
pute the gains for all the possible pairs at the beginning.
Since it takes O(N) to compute the gains for a pair, the
computation time for all the pairs is O(Nw2). Every time
a pair is merged, we must have the gains for the pairs asso-
ciated with the new fields created by the merge. This costs
O(Nw) time for each creation of a new field, which accu-
mulates to O(Nw2) throughout the computation. Thus
the total computation time of this approximation algo-
rithm is O(Nw2).

108

Table 1: Experimental results.

code program decoder total
length P D T %

(bit) (bit) (bit) (bit)

vliw 80 227,360 0 227,360 100.00
P1 min 11 31,262 163,840 195,102 85.81

auto 26 73,892 31,233 105,124 46.24

vliw 52 183,404 0 183,404 100.00
P2 min 11 38,877 122,880 161,877 88.15

auto 26 74,067 36,360 110,427 60.21

vliw 52 249,392 0 249,392 100.00
P3 min 11 52,756 122,880 175,636 70.43

auto 20 95,920 24,072 119,992 48.11

IV. Experimental Result

We implemented an experimental version of a code com-
pression program based on the method described so far.
We applied it to three industrial programs P1, P2, and
P3 for embedded VLIW processors. P1 and P2 are pro-
grams for audio encoding/decoding and P3 for video en-
coding/decoding. The size of the programs are 2,842,
3,527, and 4,796 instructions, respectively.

Table 1 shows the evaluation of the code length, pro-
gram size P , decoder size D, and sum of the program and
decoder T for three field partitioning. “Vliw” is the initial
(one-bit per one-field) partitioning which corresponds to
the original VLIW code. “Min” is the partitioning where
all bits are grouped into a single field. This corresponds
to the encoding method [Yos97] without field partitioning.
“Auto” is the field partition obtained by our algorithm.

It turned out that our algorithm sometimes tend to do
excessive merge of fields which makes decoder cost sig-
nificantly large. In order to avoid this, we rejected the
merge which makes the ratio of D(F) to P (F) greater
than a constant r. (The value of r is set to 0.7 in this
experiment.)

Although “min” reduces the program size the most, the
decoder costs are so large that the total costs remain 70%
∼ 85% of the original ones. Our method, on the other
hand, reduces the cost to 46% ∼ 60%.

The program is currently implemented in perl and
the computation time for P1, P2, P3 on UltraSPARC
(200MHz) is 235 sec., 180 sec., and 169 sec., respectively.

V. Conclusion

We presented a method of reducing size of object codes
of application specific VLIW processors.

The most simple way of applying this method to em-
bedded system design is to store coded program in the
instruction memory and to expand them by a decoder at-
tached to a processor core. We may be able to reduce the
chip area for programs, the power consumption, and also
the bandwidth between the instruction memory and the
processor.

If the decoding delay is critical, we may have to change
control pipeline scheme or redesign (resynthesize) the de-
coder of the processor. We may be able to reduce the
overall decode delay by merging our decoder to the origi-
nal decoder of the processor.

Another application we have in mind is to use this tech-
nique to design assistance or automatic synthesis of in-
struction sets. Our program gives us information on bit
correlation which may be utilized in design of instruction
format. If we can use compilers from high-level language
to horizontal instruction codes, we may directly apply the
code compression to the horizontal code, skipping the in-
struction set design.

One demerit of our scheme in practical system design is
that we can not start the implementation of the decoder
and a part of control unit until we finish the software.
Software design with compiler is a requisite to our scheme.

Finally, it is also obvious that our approximation algo-
rithm leaves much to be improved. It should be reconsid-
ered so that it can find better solutions in shorter amount
of time.

Acknowledgement

Authors express their appreciation to Prof. Isao Shi-
rakawa and Mr. Takao Onoye of Osaka University, Dr.
Takashi Kambe and Dr. Tetsuya Fujimoto of Sharp Cor-
poration for their helpful advice and discussion.

References

[Hua93] I.-J. Huang, B. Holmer, and A. Despain: “ASIA:
Automatic Synthesis of Instruction-Set Architec-
tures,” in Proc. SASIMI ’93, pp. 15–22 (Oct. 1993).

[Koz94] M. Kozuch and A. Wolfe: “Compression of Em-
bedded System Programs,” in Proc. IEEE Int. Conf.
Computer Design (ICCD ’94), pp. 270–277 (Oct.
1994).

[Yam97] M. Yamaguchi, A. Yamada, T. Nakaoka, T.
Kambe and N. Ishiura, “Architecture Evaluation
Based on the Datapath Structure and Parallel Con-
straint,” IEICE Trans. Fundamentals of Electronics,
Communications and Computer Sciences, vol. E97-
A, no. 10 (Oct. 1997).

[Yos97] Y. Yoshida B. Y. Song, H. Okuhata, T. Onoye,
and I. Shirakawa: “Low-Power Consumption Archi-
tecture for Embedded Processor,” in Proc. 2nd Inter-
national Conference on ASIC, pp. 77–80 (Oct. 1996).

109

